ORPP logo

Handbook of Operations Research Applications at Railroads.

Patty, Bruce W.

Handbook of Operations Research Applications at Railroads. - 1st ed. - 1 online resource (287 pages) - International Series in Operations Research and Management Science Series ; v.222 . - International Series in Operations Research and Management Science Series .

Intro -- Dedication -- Preface -- Contents -- Chapter 1: Train Scheduling -- 1.1 Introduction and Background -- 1.2 Role of Trains in the Railroad Operations Research Landscape -- 1.3 Types of Trains and Related Definitions -- 1.4 Specifying Road Trains -- 1.5 OR Challenges: Designing the Road Train Plan -- 1.5.1 Road Train Design Problem -- 1.5.2 Single Versus Multi-Block Trains -- 1.6 Train Routing/Block-to-Train Assignment Problems -- 1.6.1 Example Problem -- 1.6.2 Feasible Solution -- 1.7 Train Scheduling (Timing) Problem -- 1.7.1 Key Assumptions -- 1.7.2 Scheduling Variables -- 1.7.3 Scheduling Constraints -- 1.7.4 Cost Parameters -- 1.7.5 Observations on Solution Strategies -- 1.7.6 Special Cases -- 1.7.7 Problem Examples -- 1.8 Specifying Unit Trains -- 1.9 Local Service Specification Strategies -- 1.10 Train Plan Design Versus Real-Time Operations -- 1.11 Opportunities -- References -- Chapter 2: Locomotive Scheduling Problem -- 2.1 Introduction -- 2.2 Background on Locomotive Scheduling -- 2.2.1 Hard Constraints -- 2.2.2 Soft Constraints -- 2.2.3 Objective Function -- 2.3 Mathematical Models for Locomotive Scheduling -- 2.3.1 Space-Time Network Construction -- 2.3.2 Problem Size and Stage-Wise Solution Approach -- 2.3.3 Consist Flow Formulation for the LPP -- 2.3.3.1 Notation -- 2.3.3.2 Decision Variables -- 2.3.3.3 Objective Function -- 2.3.3.4 Constraints -- 2.4 Incorporating Practical Requirements -- 2.4.1 Cab-Signal Requirements -- 2.4.2 Foreign Power Requirements -- 2.5 Applications of the Model -- 2.5.1 Quantifying the Impact of Varying Minimum Connection Time -- 2.5.2 Quantifying the Effect of Changing Transport Volume on Key Performance Characteristics -- References -- Chapter 3: Simulation of Line of Road Operations -- 3.1 Introduction -- 3.2 Fundamental Elements for a Dispatching Algorithm. 3.3 Developing a Dispatching Algorithm -- 3.3.1 Overview -- 3.3.2 Example -- 3.3.3 Simplified Assumptions -- 3.4 Future Directions -- Chapter 4: Car Scheduling/Trip Planning -- 4.1 Introduction and Background -- 4.2 Car Scheduling/Trip Planning Systems in Context -- 4.3 Plan Compliance and the Value of Trip Plans -- 4.4 Current Industry Practices: Basic Car Scheduling/ Trip Planning Concepts -- 4.4.1 Current Industry Practices: Block Selection Logic -- 4.4.2 Current Industry Practices: Train Selection Logic -- 4.4.3 Current Industry Practices: Other Special Considerations -- 4.5 OR Challenge: Typical Reasons of Trip Plan Failures -- 4.6 Trip Plan Output Usages -- 4.7 OR Challenges: Alternate Approaches to Car Scheduling and Special Cases -- 4.8 Capacitation and Reservations -- 4.8.1 Specifying Capacities -- 4.8.2 Managing Reservations -- 4.9 Planning and Optimization -- 4.10 Time-Space Network Solutions -- 4.10.1 Dynamic Car Scheduling -- 4.11 Opportunities -- References -- Chapter 5: Railway Blocking Process -- 5.1 Introduction and Background -- 5.1.1 Impact of Blocking on System Efficiency and Service -- 5.1.2 Specifying the Blocking Plan -- 5.1.3 Plan Complexity -- 5.2 Current Industry Practices: The Blocking Rules Concept -- 5.2.1 Yard-Blocks, Train-Blocks, Class Codes, and Block Swaps -- 5.2.2 Local Service -- 5.3 The Table-Based Blocking Systems OR Challenge -- 5.4 Algorithmic Blocking -- 5.5 Examples of Areas Presenting OR Challenges -- 5.6 Semi-manual Blocking Plan Design Techniques -- 5.6.1 Incremental Blocking Plan Design Techniques -- 5.6.2 Tuning an Existing Plan -- 5.6.3 Checking Circuity and Excessive Handlings -- 5.6.4 Change Traffic Volume at a Yard -- 5.6.5 Designing Blocking Plans Using a Clean-Sheet Approach -- 5.6.6 Tuning Table-Based, Traffic Destination Attribute Rules Using Relaxation. 5.6.7 Additional Methods for Testing Plans -- 5.6.8 Triplet Analysis for Blocking Plan Comparisons -- 5.6.9 Tree View Analysis -- 5.7 Specialized Blocking Situations -- 5.8 Blocking Plan Optimization -- 5.8.1 Considerations That Automated Blocking Optimization Techniques Should Consider -- 5.8.2 Mathematical Representation of the Block Design Optimization Problem -- 5.8.2.1 Data -- 5.8.2.2 Variables -- 5.8.2.3 Constraints -- 5.8.2.4 Objective -- Optimization Techniques -- Heuristic Approach -- Initial Blocking Plan -- Iteratively Improve the Plan -- Resequencing Quickly -- Finding Global Optimum -- Changing Yard Penalties -- Advanced Mathematical Programming -- 5.9 Additional Considerations -- 5.10 Opportunities -- References -- Chapter 6: Crew Scheduling Problem -- 6.1 Introduction -- 6.2 Background on Crew Scheduling -- 6.2.1 Terminology -- 6.2.2 Regulatory and Contractual Requirements -- 6.3 Mathematical Models for Crew Scheduling -- 6.3.1 Model Inputs -- 6.3.2 Space-Time Network Construction -- 6.3.3 Mathematical Formulation -- 6.3.4 Solution Methods -- 6.3.4.1 Successive Constraint Generation (SCG) -- 6.3.4.2 Quadratic Cost-Perturbation (QCP) Algorithm -- 6.4 Applications of the Model -- 6.4.1 Tactical Benefits -- 6.4.2 Planning Benefits -- 6.4.3 Strategic Benefits -- References -- Chapter 7: Empty Railcar Distribution -- 7.1 Introduction -- 7.2 Background on Empty Railcar Distribution -- 7.2.1 Local Distribution and Shipper Pools -- 7.2.2 Rules-Based Transaction Processing Systems -- 7.2.3 Nonintegrated Optimization Systems -- 7.3 Current Day Integrated Real-Time Optimization Systems -- 7.3.1 Model Inputs -- 7.3.1.1 Car Supply: Actual and Predicted -- 7.3.1.2 Car Orders: Actual and Predicted -- 7.3.1.3 Shipper Preferences -- 7.3.1.4 Cost Parameters -- 7.3.1.5 Operational Information -- 7.3.2 Model Framework -- 7.3.2.1 Model Preprocessing. 7.3.2.2 Model Formulation -- 7.3.3 Model Output Post Processing -- 7.3.4 Systems Integration -- 7.3.4.1 Optimization Engine: Customer Car Order System -- 7.3.4.2 Optimization Engine-Transactional Equipment Distribution System -- 7.3.4.3 Transactional Equipment Distribution System: Car Movement Management and Tracking System -- 7.3.4.4 Optimization Model: Operational Systems: Decision Making Process Integration -- 7.3.5 Reported Benefits -- 7.3.6 Other Implementation Considerations -- 7.3.6.1 User Acceptance -- 7.3.6.2 Model Thrashing -- 7.3.7 Other Modeling Considerations -- 7.3.7.1 Endogenizing Stochasticity -- 7.3.7.2 Including Blocking Costs in Empty Car Assignment -- 7.3.8 Other Areas of Application in Rail -- References -- Chapter 8: Network Analysis and Simulation -- 8.1 Introduction and Background -- 8.1.1 Planning and Simulation -- 8.1.2 Other Types of Simulations -- 8.2 Types of Network Level Simulations -- 8.2.1 Uncapacitated Deterministic Simulations with Fixed Plans -- 8.2.2 Uncapacitated Deterministic Simulations with Probabilistic Connections -- 8.2.3 Capacitated Simulations with Fixed Plans -- 8.2.4 Capacitated Simulations with Dynamic Plan Elements -- 8.2.5 Full Monte-Carlo Capacitated Simulations -- 8.3 Resource Estimation -- 8.3.1 Estimation of Crews -- 8.3.2 Estimation of Locomotives -- 8.3.3 Estimation of Railcar Requirements -- 8.3.4 Estimation of Yard Workloads -- 8.4 Roles of Network Simulation -- 8.4.1 Mergers -- 8.4.2 Network Modifications -- 8.4.3 Emergency Situations or Special Circumstances -- 8.5 Average Day Analysis -- 8.5.1 Uncapacitated Average Day Analysis -- 8.5.2 Capacitated Average Day Analysis -- 8.5.2.1 Achieving a Robust Train Volume Formulation -- 8.5.2.2 Train-Block Prioritization -- 8.5.2.3 Fill Blocks -- 8.5.2.4 Capacitation by Length and Gross Weight -- 8.6 Future Directions and Opportunities -- References. Chapter 9: Simulation of Yard and Terminal Operations -- 9.1 Introduction -- 9.2 Reasons to Simulate -- 9.3 The Problem -- 9.3.1 Train Arrival -- 9.3.2 Handling the Inbound Crew and Power -- 9.3.3 Inbound Car Inspection -- 9.3.4 Switch (Classify) Cars -- 9.3.5 Train Assembly -- 9.3.6 Final Train Assembly -- 9.3.7 Train Departure -- 9.4 Matching the Analytic Approach with Study Requirements -- 9.5 Building a Yard Simulation -- 9.5.1 Conceptual Design -- 9.5.1.1 Simulation Engine -- 9.5.1.2 Decision Engine -- 9.5.1.3 Inbound Process -- 9.5.1.4 Switching Process -- 9.5.1.5 Train Assembly Process -- 9.5.1.6 Departure Process -- 9.5.2 Data for Simulation -- 9.5.3 Other Issues to Be Resolved -- 9.6 Recent Past to Current State of the Art -- 9.7 Future Directions -- Chapter 10: Operations Research in Rail Pricing and Revenue Management -- 10.1 Introduction -- 10.1.1 U.S. Freight Rail Pricing History -- 10.1.2 Revenue Management for Rail: Importance -- 10.1.3 Revenue Management for Rail: Challenges -- 10.1.4 Revenue Management for Rail: Recent Opportunities -- 10.2 Analytical Techniques in Freight Revenue Management -- 10.3 Characterizing Customer Behavior: Estimating Product Demand -- 10.3.1 Forecasting Demand Levels -- 10.3.2 Predicting Customer Price Sensitivity -- 10.4 Research in Revenue Management Models -- 10.4.1 Train and Block-Based Capacity Approaches -- 10.4.2 Service-Based Pricing Strategies -- 10.4.3 Container-Centric Yield Management -- 10.5 Future Directions and Opportunities for Revenue Management and Freight Rail -- References -- Chapter 11: Intermodal Rail -- 11.1 Introduction and Background Information -- 11.1.1 Definition of Intermodal -- 11.1.2 Brief History of Intermodal -- 11.1.3 Equipment Variations -- 11.1.4 Role of Railroads and IMCs -- 11.1.5 Chassis Pools, Both Domestic and International. 11.2 Examples of Decisions to Be Made Where OR Models Can Be Used.

9781489975713


Railroad tracks -- Research -- Handbooks, manuals, etc.


Electronic books.

T57.6-.97

385.24068

© 2024 Resource Centre. All rights reserved.