Modeling of Liquid Phases.
Soustelle, Michel.
Modeling of Liquid Phases. - 1st ed. - 1 online resource (261 pages)
Cover -- Title Page -- Copyright -- Contents -- Preface -- Notations and Symbols -- 1: Pure Liquids -- 1.1. Macroscopic modeling of liquids -- 1.2. Distribution of molecules in a liquid -- 1.2.1. Molecular structure of a non-associated liquid -- 1.2.2. The radial distribution function -- 1.2.3 The curve representative of the radial distribution function -- 1.2.4. Calculation of the macroscopic thermodynamic values -- 1.3. Models extrapolated from gases or solids -- 1.3.1. Guggenheim's smoothed potential model -- 1.3.2. Mie's harmonic oscillator model -- 1.3.3. Determination of the free volume on the basis of the dilation and the compressibility -- 1.4. Lennard-Jones and Devonshire cellular model -- 1.5. Cellular and vacancies model -- 1.6. Eyring's semi-microscopic formulation of the vacancy model -- 1.7. Comparison between the different microscopic models and experimental results -- 2: Macroscopic Modeling of Liquid Molecular Solutions -- 2.1. Macroscopic modeling of the Margules expansion -- 2.2. General representation of a solution with several components -- 2.3. Macroscopic modeling of the Wagner expansions -- 2.3.1. Definition of the Wagner interaction coefficients -- 2.3.2. Example of a ternary solution: experimental determination of Wagner's interaction coefficients -- 2.4. Dilute ideal solutions -- 2.4.1. Thermodynamic definition of a dilute ideal solution -- 2.4.2. Activity coefficients of a component with a pure-substance reference -- 2.4.3. Excess Gibbs energy of an ideal dilute solution -- 2.4.4. Enthalpy of mixing for an ideal dilute solution -- 2.4.5. Excess entropy of a dilute ideal solution -- 2.4.6. Molar heat capacity of an ideal dilute solution at constant pressure -- 2.5. Associated solutions -- 2.5.1. Example of the study of an associated solution -- 2.5.2. Relations between the chemical potentials of the associated solution. 2.5.3. Calculating the extent of the equilibrium in an associated solution -- 2.5.4. Calculating the activity coefficients in an associated solution -- 2.5.5. Definition of a regular solution -- 2.5.6. Strictly-regular solutions -- 2.5.7. Macroscopic modeling of strictly-regular binary solutions -- 2.5.8. Extension of the model of a strictly-regular solution to solutions with more than two components -- 2.6. Athermic solutions -- 2.6.1. Thermodynamic definition of an athermic solution -- 2.6.2. Variation of the activity coefficients with temperature in an athermic solution -- 2.6.3. Molar entropy and Gibbs energy of mixing for an athermic solution -- 2.6.4. Molar heat capacity of an athermic solution -- 3: Microscopic Modeling of Liquid Molecular Solutions -- 3.1. Models of binary solutions with molecules of similar dimensions -- 3.1.1. The microscopic model of a perfect solution -- 3.1.2. Microscopic description of strictly-regular solutions -- 3.1.3. Microscopic modeling of an ideal dilute solution -- 3.2. The concept of local composition -- 3.2.1. The concept of local composition in a solution -- 3.2.2. Energy balance of the mixture -- 3.2.3. Warren and Cowley's order parameter -- 3.2.4. Model of Fowler & -- Guggenheim's quasi-chemical solution -- 3.3. The quasi-chemical method of modeling solutions -- 3.4. Difference of the molar volumes: the combination term -- 3.4.1. Combinatorial excess entropy -- 3.4.2. Flory's athermic solution model -- 3.4.3. Staverman's corrective factor -- 3.4.3.1. The concept of structural parameters -- 3.4.3.2. Staverman's model -- 3.5. Combination of the different concepts: the UNIQUAC model -- 3.6. The concept of contribution of groups: the UNIFAC model -- 3.6.1. The concept of the contribution of groups -- 3.6.2. The UNIFAC model -- 3.6.3. The modified UNIFAC model (Dortmund). 3.6.4. Use of the UNIFAC system in the UNIQUAC model -- 4: Ionic Solutions -- 4.1. Reference state, unit of composition and activity coefficients of ionic solutions -- 4.2. Debye and Hückel's electrostatic model -- 4.2.1. Presentation of the problem -- 4.2.2. Notations -- 4.2.3. Poisson's equation -- 4.2.4. Electrical potential due to the ionic atmosphere -- 4.2.5. Debye and Hückel's hypotheses -- 4.2.5.1. Hypothesis 1: shape of the ions and nature of the medium -- 4.2.5.2. Hypothesis 2: pairwise interactions -- 4.2.5.3. Hypothesis 3: Boltzmann distribution -- 4.2.5.4. Hypothesis 4: relation between < -- Ψ(r)> -- k and ε kj -- 4.2.5.5. Hypothesis 5: primacy of thermal agitation -- 4.2.6. Debye and Hückel's solution for the potential due to the ionic atmosphere -- 4.2.7. Charge and radius of the ionic atmosphere of an ion -- 4.2.8. Excess Helmholtz energy and excess Gibbs energy due to charges -- 4.2.9. Activity coefficients of the ions and mean activity coefficient of the solution -- 4.2.10. Self-consistency of Debye and Hückel's model -- 4.2.10.1. Thermodynamic criteria -- 4.2.10.2. Electrostatic criteria -- 4.2.11. Switching from concentrations to molalities -- 4.2.12. Debye and Hückel's law: validity and comparison with experimental data -- 4.2.13. Debye and Hückel's limit law -- 4.2.14. Extensions of Debye and Hückel's law -- 4.3. Pitzer's model -- 4.4. UNIQUAC model extended to ionic solutions -- 5: Determination of the Activity of a Component of a Solution -- 5.1. Calculation of an activity coefficient when we know other coefficients -- 5.1.1. Calculation of the activity of a component when we know that of the other components in the solution -- 5.1.2. Determination of the activity of a component at one temperature if we know its activity at another temperature. 5.2. Determination of the activity on the basis of the measured vapor pressure -- 5.2.1. Measurement by the direct method -- 5.2.2. Method using the vaporization constant in reference II -- 5.3. Measurement of the activity of the solvent of the basis of the colligative properties -- 5.3.1. Use of measuring of the depression of the boiling point - ebullioscopy -- 5.3.2. Use of measuring of the depression of the freezing point - cryoscopy -- 5.3.3. Use of the measurement of osmotic pressure -- 5.4. Measuring the activity on the basis of solubility measurements -- 5.4.1. Measuring the solubilities in molecular solutions -- 5.4.2. Measuring the solubilities in ionic solutions -- 5.5. Measuring the activity by measuring the distribution of a solute between two immiscible solvents -- 5.6. Activity in a conductive solution -- 5.6.1. Measuring the activity in a strong electrolyte -- 5.6.1.1. Measuring the absolute activity of an ion -- 5.6.1.2. Measurement of the mean activity coefficient of a strong electrolyte -- 5.6.2. Determination of the mean activity of a weak electrolyte on the basis of the dissociation equilibrium -- Appendices -- Appendix 1: Statistical Methods of Numerical Simulation -- A.1.1. The physical bases of simulation -- A.1.2. Construction of the sample -- A.1.2.1. Truncation of the potential function -- A.1.2.2. Limitation of edge effects -- A.1.2.2.1. Periodic boundary condition -- A.1.2.2.2. Minimum-image convention -- A.1.2.3. Estimation of the duration of the calculation -- A.1.3. The main calculation methods -- A.1.3.1. The Monte-Carlo method -- A.1.3.2. The molecular dynamics method -- Appendix 2: Reminders of the Properties of Solutions -- A.2.1. Values attached to solutions -- A.2.2. Peculiar values and mixing values -- A.2.2.1. Definitions -- A.2.3. Characterization of the imperfection of a real solution. A.2.4. Activity coefficients -- A.2.5. Activity coefficients and reference states -- A.2.5.1. Relation between the activity coefficients of the components of a solution -- A.2.5.2. Influence of the different variables on the activity coefficients -- A.2.5.2.1. Temperature -- A.2.5.2.2. Influence of the composition on the activity coefficients -- A.2.6. Excess values -- A.2.7. Ionic solutions -- A.2.7.1. Composition of an ionic solution and reference state -- A.2.7.2. Chemical potential of an ion -- A.2.7.3. Relation between the activities of the ions and the overall activity of the solutes -- A.2.7.4. Mean concentration and mean activity coefficient of the ions -- A.2.7.5. Activity coefficient of an individual ion -- A.2.7.6. Concept of ionic strength -- Appendix 3: Reminders on Statistical Thermodynamics -- A.3.1. The three statistical distributions -- A.3.1.1. Maxwell-Boltzmann statistics -- A.3.1.2. Bose-Einstein quantum statistics -- A.3.1.3. Fermi-Dirac quantum statistics -- A.3.1.4. Classic limit case -- A.3.2. Partition functions of a molecule object -- A.3.2.1. Definition -- A.3.2.2. Independence of the energies -- A.3.2.3. Partial molecular partition functions, relating to the different motions -- A.3.2.3.1. Translation -- A.3.2.3.2. Rotation with moment of inertia I -- A.3.2.3.3. Vibration of frequency ν -- A.3.3. Canonical partition function -- A.3.3.1. Canonical ensemble -- A.3.3.2. Canonical partition functions -- A.3.3.3. Canonical partition function and molecular partition functions -- A.3.3.3.1. Case of collections of discernible molecules -- A.3.3.3.2. Case of collections of indiscernible molecules -- A.3.4. Interactions between molecules -- A.3.5. Canonical partition functions and thermodynamic functions -- A.3.6. Equilibrium constants in the liquid phase and partition functions -- Bibliography -- Index.
9781119178491
Science.
Electronic books.
QD923 .S384 2015
541.3630151
Modeling of Liquid Phases. - 1st ed. - 1 online resource (261 pages)
Cover -- Title Page -- Copyright -- Contents -- Preface -- Notations and Symbols -- 1: Pure Liquids -- 1.1. Macroscopic modeling of liquids -- 1.2. Distribution of molecules in a liquid -- 1.2.1. Molecular structure of a non-associated liquid -- 1.2.2. The radial distribution function -- 1.2.3 The curve representative of the radial distribution function -- 1.2.4. Calculation of the macroscopic thermodynamic values -- 1.3. Models extrapolated from gases or solids -- 1.3.1. Guggenheim's smoothed potential model -- 1.3.2. Mie's harmonic oscillator model -- 1.3.3. Determination of the free volume on the basis of the dilation and the compressibility -- 1.4. Lennard-Jones and Devonshire cellular model -- 1.5. Cellular and vacancies model -- 1.6. Eyring's semi-microscopic formulation of the vacancy model -- 1.7. Comparison between the different microscopic models and experimental results -- 2: Macroscopic Modeling of Liquid Molecular Solutions -- 2.1. Macroscopic modeling of the Margules expansion -- 2.2. General representation of a solution with several components -- 2.3. Macroscopic modeling of the Wagner expansions -- 2.3.1. Definition of the Wagner interaction coefficients -- 2.3.2. Example of a ternary solution: experimental determination of Wagner's interaction coefficients -- 2.4. Dilute ideal solutions -- 2.4.1. Thermodynamic definition of a dilute ideal solution -- 2.4.2. Activity coefficients of a component with a pure-substance reference -- 2.4.3. Excess Gibbs energy of an ideal dilute solution -- 2.4.4. Enthalpy of mixing for an ideal dilute solution -- 2.4.5. Excess entropy of a dilute ideal solution -- 2.4.6. Molar heat capacity of an ideal dilute solution at constant pressure -- 2.5. Associated solutions -- 2.5.1. Example of the study of an associated solution -- 2.5.2. Relations between the chemical potentials of the associated solution. 2.5.3. Calculating the extent of the equilibrium in an associated solution -- 2.5.4. Calculating the activity coefficients in an associated solution -- 2.5.5. Definition of a regular solution -- 2.5.6. Strictly-regular solutions -- 2.5.7. Macroscopic modeling of strictly-regular binary solutions -- 2.5.8. Extension of the model of a strictly-regular solution to solutions with more than two components -- 2.6. Athermic solutions -- 2.6.1. Thermodynamic definition of an athermic solution -- 2.6.2. Variation of the activity coefficients with temperature in an athermic solution -- 2.6.3. Molar entropy and Gibbs energy of mixing for an athermic solution -- 2.6.4. Molar heat capacity of an athermic solution -- 3: Microscopic Modeling of Liquid Molecular Solutions -- 3.1. Models of binary solutions with molecules of similar dimensions -- 3.1.1. The microscopic model of a perfect solution -- 3.1.2. Microscopic description of strictly-regular solutions -- 3.1.3. Microscopic modeling of an ideal dilute solution -- 3.2. The concept of local composition -- 3.2.1. The concept of local composition in a solution -- 3.2.2. Energy balance of the mixture -- 3.2.3. Warren and Cowley's order parameter -- 3.2.4. Model of Fowler & -- Guggenheim's quasi-chemical solution -- 3.3. The quasi-chemical method of modeling solutions -- 3.4. Difference of the molar volumes: the combination term -- 3.4.1. Combinatorial excess entropy -- 3.4.2. Flory's athermic solution model -- 3.4.3. Staverman's corrective factor -- 3.4.3.1. The concept of structural parameters -- 3.4.3.2. Staverman's model -- 3.5. Combination of the different concepts: the UNIQUAC model -- 3.6. The concept of contribution of groups: the UNIFAC model -- 3.6.1. The concept of the contribution of groups -- 3.6.2. The UNIFAC model -- 3.6.3. The modified UNIFAC model (Dortmund). 3.6.4. Use of the UNIFAC system in the UNIQUAC model -- 4: Ionic Solutions -- 4.1. Reference state, unit of composition and activity coefficients of ionic solutions -- 4.2. Debye and Hückel's electrostatic model -- 4.2.1. Presentation of the problem -- 4.2.2. Notations -- 4.2.3. Poisson's equation -- 4.2.4. Electrical potential due to the ionic atmosphere -- 4.2.5. Debye and Hückel's hypotheses -- 4.2.5.1. Hypothesis 1: shape of the ions and nature of the medium -- 4.2.5.2. Hypothesis 2: pairwise interactions -- 4.2.5.3. Hypothesis 3: Boltzmann distribution -- 4.2.5.4. Hypothesis 4: relation between < -- Ψ(r)> -- k and ε kj -- 4.2.5.5. Hypothesis 5: primacy of thermal agitation -- 4.2.6. Debye and Hückel's solution for the potential due to the ionic atmosphere -- 4.2.7. Charge and radius of the ionic atmosphere of an ion -- 4.2.8. Excess Helmholtz energy and excess Gibbs energy due to charges -- 4.2.9. Activity coefficients of the ions and mean activity coefficient of the solution -- 4.2.10. Self-consistency of Debye and Hückel's model -- 4.2.10.1. Thermodynamic criteria -- 4.2.10.2. Electrostatic criteria -- 4.2.11. Switching from concentrations to molalities -- 4.2.12. Debye and Hückel's law: validity and comparison with experimental data -- 4.2.13. Debye and Hückel's limit law -- 4.2.14. Extensions of Debye and Hückel's law -- 4.3. Pitzer's model -- 4.4. UNIQUAC model extended to ionic solutions -- 5: Determination of the Activity of a Component of a Solution -- 5.1. Calculation of an activity coefficient when we know other coefficients -- 5.1.1. Calculation of the activity of a component when we know that of the other components in the solution -- 5.1.2. Determination of the activity of a component at one temperature if we know its activity at another temperature. 5.2. Determination of the activity on the basis of the measured vapor pressure -- 5.2.1. Measurement by the direct method -- 5.2.2. Method using the vaporization constant in reference II -- 5.3. Measurement of the activity of the solvent of the basis of the colligative properties -- 5.3.1. Use of measuring of the depression of the boiling point - ebullioscopy -- 5.3.2. Use of measuring of the depression of the freezing point - cryoscopy -- 5.3.3. Use of the measurement of osmotic pressure -- 5.4. Measuring the activity on the basis of solubility measurements -- 5.4.1. Measuring the solubilities in molecular solutions -- 5.4.2. Measuring the solubilities in ionic solutions -- 5.5. Measuring the activity by measuring the distribution of a solute between two immiscible solvents -- 5.6. Activity in a conductive solution -- 5.6.1. Measuring the activity in a strong electrolyte -- 5.6.1.1. Measuring the absolute activity of an ion -- 5.6.1.2. Measurement of the mean activity coefficient of a strong electrolyte -- 5.6.2. Determination of the mean activity of a weak electrolyte on the basis of the dissociation equilibrium -- Appendices -- Appendix 1: Statistical Methods of Numerical Simulation -- A.1.1. The physical bases of simulation -- A.1.2. Construction of the sample -- A.1.2.1. Truncation of the potential function -- A.1.2.2. Limitation of edge effects -- A.1.2.2.1. Periodic boundary condition -- A.1.2.2.2. Minimum-image convention -- A.1.2.3. Estimation of the duration of the calculation -- A.1.3. The main calculation methods -- A.1.3.1. The Monte-Carlo method -- A.1.3.2. The molecular dynamics method -- Appendix 2: Reminders of the Properties of Solutions -- A.2.1. Values attached to solutions -- A.2.2. Peculiar values and mixing values -- A.2.2.1. Definitions -- A.2.3. Characterization of the imperfection of a real solution. A.2.4. Activity coefficients -- A.2.5. Activity coefficients and reference states -- A.2.5.1. Relation between the activity coefficients of the components of a solution -- A.2.5.2. Influence of the different variables on the activity coefficients -- A.2.5.2.1. Temperature -- A.2.5.2.2. Influence of the composition on the activity coefficients -- A.2.6. Excess values -- A.2.7. Ionic solutions -- A.2.7.1. Composition of an ionic solution and reference state -- A.2.7.2. Chemical potential of an ion -- A.2.7.3. Relation between the activities of the ions and the overall activity of the solutes -- A.2.7.4. Mean concentration and mean activity coefficient of the ions -- A.2.7.5. Activity coefficient of an individual ion -- A.2.7.6. Concept of ionic strength -- Appendix 3: Reminders on Statistical Thermodynamics -- A.3.1. The three statistical distributions -- A.3.1.1. Maxwell-Boltzmann statistics -- A.3.1.2. Bose-Einstein quantum statistics -- A.3.1.3. Fermi-Dirac quantum statistics -- A.3.1.4. Classic limit case -- A.3.2. Partition functions of a molecule object -- A.3.2.1. Definition -- A.3.2.2. Independence of the energies -- A.3.2.3. Partial molecular partition functions, relating to the different motions -- A.3.2.3.1. Translation -- A.3.2.3.2. Rotation with moment of inertia I -- A.3.2.3.3. Vibration of frequency ν -- A.3.3. Canonical partition function -- A.3.3.1. Canonical ensemble -- A.3.3.2. Canonical partition functions -- A.3.3.3. Canonical partition function and molecular partition functions -- A.3.3.3.1. Case of collections of discernible molecules -- A.3.3.3.2. Case of collections of indiscernible molecules -- A.3.4. Interactions between molecules -- A.3.5. Canonical partition functions and thermodynamic functions -- A.3.6. Equilibrium constants in the liquid phase and partition functions -- Bibliography -- Index.
9781119178491
Science.
Electronic books.
QD923 .S384 2015
541.3630151