ORPP logo

Lignocellulose Biorefinery Engineering : Principles and Applications.

Chen, Hongzhang.

Lignocellulose Biorefinery Engineering : Principles and Applications. - 1st ed. - 1 online resource (274 pages)

Front Cover -- Lignocellulose Biorefinery Engineering: Principles and Applications -- Copyright -- Contents -- Woodhead Publishing Series in Energy -- Preface -- Chapter 1: Lignocellulose biorefinery engineering -- 1.1. Resources, energy, and environment -- 1.1.1. Definition and classification of resources -- 1.1.2. Resource issues and resource crises -- 1.1.2.1. Resource issues -- 1.1.2.2. Resource crises -- 1.2. Resource recycling and waste reuse -- 1.2.1. Resource recycling -- 1.2.2. Waste reuse -- 1.2.3. Biomass recycling -- 1.2.4. Eco-industrial systems and eco-industrial parks -- 1.3. Lignocellulosic resources -- 1.3.1. Lignocellulose definition and classification -- 1.3.2. Characteristics of lignocellulosic resources -- 1.3.3. Utilization history of lignocellulosic resources -- 1.3.3.1. History of lignocellulose utilization for energy -- 1.3.3.2. History of lignocellulose utilization for materials -- 1.3.4. Current situation of lignocellulose utilization -- 1.4. Lignocellulose biorefinery engineering -- 1.4.1. Necessity for lignocellulose biorefining -- 1.4.2. Key points of lignocellulose biorefinery engineering -- 1.4.2.1. Theoretical basis of lignocellulose biorefining -- 1.4.2.2. Feedstock engineering for lignocellulose biorefining -- 1.4.2.3. Conversion engineering for lignocellulose biorefining -- 1.4.2.4. Product engineering for lignocellulose biorefining -- 1.4.2.5. Process engineering for lignocellulose biorefining -- 1.4.2.6. Modes of integrated industrial lignocellulose biorefinery chains -- References -- Chapter 2: Theoretical basis of lignocellulose biorefining -- 2.1. Lignocellulose recalcitrance -- 2.1.1. Introduction to lignocellulose recalcitrance -- 2.1.2. Structural analysis of lignocellulose recalcitrance -- 2.2. Lignocellulose porous medium -- 2.2.1. Porous structure at the tissue level. 2.2.2. Porous structure at the cell level -- 2.2.3. Porous structure at the cell wall level -- 2.3. Mass transfer resistance of lignocellulose: seepage recalcitrance -- 2.3.1. Lignocellulose transfer structure -- 2.3.2. Lignocellulose seepage recalcitrance -- 2.3.3. Impact of lignocellulose interfacial properties on seepage recalcitrance -- 2.4. Lignocellulose functional components -- 2.5. Changes in composition and structure during the lignocellulose biorefining process -- 2.6. Analysis methods in lignocellulose biorefining -- 2.6.1. Analysis methods for lignocellulosic materials -- 2.6.2. Analysis methods for the biorefinery process -- 2.6.3. Analysis methods for products -- References -- Chapter 3: Lignocellulose biorefinery feedstock engineering -- 3.1. Overview -- 3.2. Technologies of components fractionation -- 3.2.1. Molecular level selective fractionation technology -- 3.2.2. Cell-level selective fractionation technology -- 3.2.3. Tissue-level selective fractionation technology -- 3.3. Technologies of selective structure deconstruction -- 3.3.1. Introduction to selective structure deconstruction technologies -- 3.3.2. The history of the development of selective structure deconstruction technologies -- 3.3.2.1. Overall conversion of functionality -- 3.3.2.2. Complete conversion of functionality -- 3.3.2.3. Deconstruction and conversion of partial functionality -- 3.3.3. Current situation for selective structure deconstruction technologies -- 3.3.3.1. Partial structure deconstruction of hemp material to improve spinning function -- 3.3.3.2. Functional modification of whole straw to prepare ecological board -- 3.3.3.3. Multifunction realized by partial structure deconstruction of straw -- 3.3.4. Development trends of selective structure deconstruction technologies -- 3.4. Steam explosion treatment technology. 3.4.1. Principles and equipment of steam explosion technology -- 3.4.1.1. Principles of steam explosion technology -- 3.4.1.2. Steam explosion equipment -- Batch steam explosion equipment -- Continuous steam explosion equipment -- 3.4.1.3. Steam explosion-related devices -- 3.4.2. Steam explosion technology types -- 3.4.2.1. Low pressure and nonpolluting steam explosion technology -- 3.4.2.2. Gas-phase explosion technology of mixed media -- 3.4.2.3. Two-phase steam explosion technology -- 3.4.3. Technical evaluation of steam explosion technology -- 3.4.3.1. Comparison of different pretreatments -- 3.4.3.2. Pretreatment economy -- 3.5. Establishment of the sugar platform -- 3.5.1. Hemicellulose platform -- 3.5.1.1. Introduction -- 3.5.1.2. Methods of establishing a hemicellulose platform -- Alkali method -- Acid method -- Autohydrolysis method -- 3.5.1.3. Product development of the hemicellulose sugar platform -- 3.5.2. Cellulose platform -- 3.5.2.1. Methods of establishing a cellulose platform -- Acid hydrolysis -- Enzymatic hydrolysis -- 3.5.2.2. Products from cellulose sugar platforms -- 3.6. Establishment of the lignin platform -- 3.6.1. Introduction -- 3.6.2. Methods of establishing a lignin platform -- 3.6.2.1. Analytical lignin -- Milling wood lignin -- Klason lignin -- 3.6.2.2. Lignin for industrial applications -- Kraft lignin -- Alkali lignin -- Lignosulfonate -- Organic solvent lignin -- Enzymatic hydrolysis lignin -- Steam exploded lignin -- 3.6.3. Product development of the lignin platform -- 3.6.3.1. Applications in agriculture -- Fertilizer modifier -- Pesticide release agent -- Feed binding agent -- Liquid film -- Soil ameliorant -- 3.6.3.2. Applications in high polymer materials -- Polymerization reactions with monomer/polymer materials -- Lignin-based polymer blends -- 3.6.3.3. Applications in carbon materials -- Activated carbon. Carbon fiber -- References -- Chapter 4: Lignocellulose biorefinery conversion engineering -- 4.1. Lignocellulose bioconversion technologies -- 4.1.1. Characteristics of lignocellulose conversion technologies -- 4.1.2. Applicability of lignocellulose used in bioconversion -- 4.1.2.1. Rich in nutrients -- 4.1.2.2. Water binding capacity -- 4.1.2.3. The unique interface property of lignocellulose -- 4.1.3. Classifications of lignocellulose bioconversion technologies -- 4.1.3.1. Liquid bioconversion technology of lignocellulose -- 4.1.3.2. Solid-state bioconversion technology of lignocellulose -- 4.1.3.3. Comparison between liquid and solid-state bioconversion technology -- 4.1.4. Equipment for lignocellulose bioconversion -- 4.1.4.1. Gas double-dynamic solid-state fermentation bioreactor -- 4.1.4.2. Solid phase enzymolysis coupled with liquid fermentation -- 4.1.5. Products of lignocellulose bioconversion technologies -- 4.1.5.1. Solid phase enzymolysis in liquid fermentation -- 4.1.5.2. Bacterial cellulose production from straw lignocellulose via solid-state fermentation -- 4.1.5.3. Xanthan production via solid state fermentation -- 4.1.5.4. Enzyme production by solid-state fermentation -- 4.1.5.5. Biopesticides production by solid-state fermentation -- 4.2. Lignocellulose physical conversion technologies -- 4.2.1. Mechanisms of lignocellulose physical conversion technologies -- 4.2.2. Products of lignocellulose physical conversion technologies -- 4.2.2.1. Solid fuel -- 4.2.2.2. Man-made board -- 4.2.2.3. Building materials -- 4.2.2.4. Wood-plastic composites -- 4.2.2.5. Ecological building boards -- 4.3. Lignocellulose thermochemical conversion technologies -- 4.3.1. Outlines of thermochemical conversion technologies -- 4.3.2. Mechanisms of thermochemical conversion technologies -- 4.3.3. Pyrolysis technology of lignocellulose. 4.3.3.1. Effects of lignocellulose on pyrolysis performance -- Pyrolysis mechanism of cellulose -- Pyrolysis mechanism of hemicelluloses -- Pyrolysis mechanism of lignin -- 4.3.3.2. Products from lignocellulose pyrolysis technology -- Water -- Oxygen content -- Viscosity -- Acidity -- Heat value -- Ash -- Composition of bio-oil -- 4.3.3.3. Bio-oil modification -- Hydrogenated deoxidization -- Catalytic cracking of pyrolysis gas -- Emulsion -- 4.3.4. Gasification technology of lignocellulose -- 4.3.5. Liquefaction technology of lignocellulose -- 4.3.5.1. Direct liquefaction under high temperature and high pressure -- 4.3.5.2. Moderate liquefaction -- Phenol liquefaction -- Polyhydric alcohols liquefaction -- 4.3.6. Combustion technology of lignocellulose -- References -- Chapter 5: Lignocellulose biorefinery product engineering -- 5.1. Overview -- 5.2. Bioenergy -- 5.2.1. Ethanol -- 5.2.1.1. Applications and market for fuel ethanol -- 5.2.1.2. The development of ethanol production and associated problems -- 5.2.2. Butanol -- 5.2.2.1. Applications and market for butanol -- 5.2.2.2. The development of butanol production and associated problems -- 5.2.3. Biogas -- 5.2.3.1. Applications and market for biogas -- 5.2.3.2. The development of biogas and associated problems -- 5.2.4. Hydrogen -- 5.2.4.1. Applications and market for hydrogen -- 5.2.4.2. The development of hydrogen production and associated problems -- 5.2.5. Biomass briquettes -- 5.2.5.1. Applications and market for biomass briquettes -- 5.2.5.2. The development of biomass briquette production and associated problems -- 5.2.6. Bio-oil -- 5.2.6.1. Applications and market for bio-oil -- 5.2.6.2. The development of bio-oil production and associated problems -- 5.2.7. Conclusions -- 5.3. Bio-based chemicals -- 5.3.1. Oxalic acid -- 5.3.1.1. Applications and market for oxalic acid. 5.3.1.2. The development of oxalic acid production and associated problems.

9780081001455


Lignocellulose--Biotechnology.
Biomass.
Biomass. (OCoLC)fst00832522.
Lignocellulose--Biotechnology. (OCoLC)fst00998748.


Electronic books.

TP248.65.L54C463

662.8/8

© 2024 Resource Centre. All rights reserved.