Materials for Low-Temperature Fuel Cells.
Ladewig, Bradley.
Materials for Low-Temperature Fuel Cells. - 1st ed. - 1 online resource (275 pages) - Materials for Sustainable Energy and Development Series . - Materials for Sustainable Energy and Development Series .
Materials for Low-Temperature Fuel Cells -- Contents -- Series Editor's Preface -- About the Series Editor -- About the Volume Editors -- List of Contributors -- 1 Key Materials for Low-Temperature Fuel Cells: An Introduction -- 2 Alkaline Anion Exchange Membrane Fuel Cells -- 2.1 Fuel Cells -- 2.2 PEM Fuel Cell Principles -- 2.2.1 Equilibrium Kinetics -- 2.2.2 Butler-Volmer Kinetics -- 2.2.3 Exchange Current Density -- 2.2.4 The Fuel Cell Polarization Curve -- 2.3 Alkaline Fuel Cells -- 2.3.1 The ORR Mechanism -- 2.3.2 The HOR in Alkaline -- 2.3.3 The Aqueous Electrolyte AFC -- 2.3.4 The AAEM Fuel Cell -- 2.3.4.1 AAEM Principles -- 2.3.4.2 Alkaline Membranes -- 2.3.4.3 AAEM Fuel Cell Examples -- 2.4 Summary -- References -- 3 Catalyst Support Materials for Proton Exchange Membrane Fuel Cells -- 3.1 Introduction -- 3.2 Current Status of Support Materials and Role of Carbon as Support in Fuel Cells -- 3.3 Novel Carbon Materials as Electrocatalyst Support for Fuel Cells -- 3.3.1 Mesoporous Carbon as Support Materials for Fuel Cells -- 3.3.2 Graphite Nanofibers as Support Materials for Fuel Cells -- 3.3.3 Carbon Nanotubes as Support Materials for Fuel Cells -- 3.3.4 Graphene as Support Materials for Fuel Cells -- 3.3.5 Nitrogen-Doped Carbon Materials -- 3.4 Conductive Metal Oxide as Support Materials -- 3.5 Metal Carbides and Metal Nitrides as Catalyst Supports -- 3.6 Conducting Polymer as Support Materials for Fuel Cells -- 3.7 Conducting Polymer-Grafted Carbon Materials -- 3.8 3M Nanostructured Thin Film as Support Materials for Fuel Cells -- 3.9 Summary and Outlook -- References -- 4 Anode Catalysts for Low-Temperature Direct Alcohol Fuel Cells -- 4.1 Introduction -- 4.2 Anode Catalysts for Direct Methanol Fuel Cells: Improved Performance of Binary and Ternary Catalysts -- 4.2.1 Principles of Direct Methanol Fuel Cells. 4.2.2 Reaction Mechanisms and Catalysts for Methanol Electrooxidation -- 4.3 Anode Catalysts for Direct Ethanol Fuel Cells: Break C-C Bond to Achieve Complete 12-Electron-Transfer Oxidation -- 4.3.1 Principles of PEM-Direct Ethanol Fuel Cells -- 4.3.2 Reaction Mechanisms and Catalysts for Ethanol Electrooxidation -- 4.3.3 Anion Exchange Membrane-Based Direct Ethanol Fuel Cells (AEMDEFCs) -- 4.3.4 Anode Catalysts for AEM-DEFCs -- 4.4 Anode Catalysts for Direct Polyol Fuel Cells (Ethylene Glycol, Glycerol): Cogenerate Electricity and Valuable Chemicals Based on Anion Exchange Membrane Platform -- 4.4.1 Overview of Electrooxidation of Polyols -- 4.4.2 Reaction Mechanisms and Catalysts for Ethylene Glycol Electrooxidation -- 4.4.3 Reaction Mechanisms and Catalysts for Glycerol Electrooxidation -- 4.5 Synthetic Methods of Metal Electrocatalysts -- 4.5.1 Impregnation Method -- 4.5.2 Colloidal Method -- 4.5.2.1 Polyol Method -- 4.5.2.2 Organic-Phase Method -- 4.5.3 Microemulsion Method -- 4.5.4 Other Methods -- 4.6 Carbon Nanomaterials as Anode Catalyst Support -- 4.6.1 Carbon Nanotubes -- 4.6.2 Carbon Nanofibers -- 4.6.3 Ordered Mesoporous Carbons -- 4.6.4 Graphene Sheets -- 4.7 Future Challenges and Opportunities -- Acknowledgments -- References -- 5 Membranes for Direct Methanol Fuel Cells -- 5.1 Introduction -- 5.2 Basic Principles of Direct Methanol Fuel Cell Operation -- 5.3 Membranes for Direct Methanol Fuel Cells -- 5.3.1 Perfluorosulfonic Acid Membranes -- 5.3.2 Poly(styrene)-Based Electrolytes -- 5.3.3 Poly(arylene ether)-Type Polymers -- 5.3.4 Poly(ether ether) Ketone-Type Polymers -- 5.3.5 Polybenzimidazoles -- 5.3.6 Polysulfones and Polyethersulfones -- 5.3.7 Polyimides -- 5.3.8 Grafted Polymer Electrolyte Membranes -- 5.3.9 Block Copolymers -- 5.3.10 Composite Polymer Membranes -- 5.4 Membrane Properties Summary -- 5.5 Conclusions. References -- 6 Hydroxide Exchange Membranes and Ionomers -- 6.1 Introduction -- 6.1.1 Definition -- 6.1.2 Functions -- 6.1.3 Features -- 6.2 Requirements -- 6.2.1 High Hydroxide Conductivity -- 6.2.2 Excellent Chemical Stability -- 6.2.3 Sufficient Physical Stability -- 6.2.4 Controlled Solubility -- 6.2.5 Other Important Properties -- 6.3 Fabrications and Categories -- 6.3.1 Polymer Functionalization -- 6.3.2 Monomer Polymerization -- 6.3.3 Membrane Radiation Grafting -- 6.3.4 Reinforcement Methods -- 6.4 Structure and Properties of Cationic Functional Group -- 6.4.1 Quaternary Nitrogen-Based Cationic Functional Groups -- 6.4.1.1 Tetraalkyl Ammonium -- 6.4.1.2 Cycloalkyl Ammonium -- 6.4.1.3 Pyridinium -- 6.4.1.4 Guanidinium -- 6.4.1.5 Imidazolium -- 6.4.2 Quaternary Phosphorus-Based Cationic Functional Groups -- 6.5 Structure and Properties of Polymer Main Chain -- 6.5.1 Chemical Structure -- 6.5.1.1 Aromatic Main-Chain Polymers -- 6.5.1.2 Aliphatic Main-Chain Polymers -- 6.5.2 Sequential Structure -- 6.6 Structure and Properties of Chemical Cross-Linking -- 6.6.1 Chemical Structure -- 6.6.2 Physical Structure -- 6.7 Prospective -- References -- 7 Materials for Microbial Fuel Cells -- 7.1 Introduction -- 7.2 MFC Configuration -- 7.3 Anode Materials -- 7.3.1 Solid Carbon Materials -- 7.3.2 Granular Carbon Materials -- 7.3.3 Fiber Carbon Materials -- 7.3.4 Porous Carbon Materials -- 7.3.5 Modification of Anode Materials -- 7.4 Cathode -- 7.4.1 Catalyst Binders -- 7.4.2 Diffusion Layers -- 7.4.3 Current Collector -- 7.4.4 Cathode Fouling -- 7.4.5 Cathode Catalysts -- 7.4.5.1 Pt Cathode Modified with Nanomaterials -- 7.4.5.2 Cathode with Non-Pt Metal Catalyst -- 7.4.5.3 Carbon Cathodes -- 7.4.5.4 Conductive Polymers -- 7.4.5.5 Biocathodes -- 7.5 Separators -- 7.5.1 Cation Exchange Membranes -- 7.5.2 Anion Exchange Membranes -- 7.5.3 Biopolar Membranes. 7.5.4 Filtration Membranes -- 7.5.5 Porous Fabrics -- 7.6 Outlook -- References -- 8 Bioelectrochemical Systems -- 8.1 Bioelectrochemical Systems and Bioelectrocatalysis -- 8.2 On the Nature of Microbial Bioelectrocatalysis -- 8.3 Microbial Electron Transfer Mechanisms -- 8.3.1 Direct Electron Transfer -- 8.3.2 Mediated Electron Transfer (MET) -- 8.3.2.1 MET Based on Secondary Metabolites -- 8.3.2.2 MET Based on Primary Metabolites -- 8.4 From Physiology to Technology: Microbial Bioelectrochemical Systems -- 8.5 Application Potential of BES Technology -- 8.6 Characterization of BESs and Microbial Bioelectrocatalysts -- 8.6.1 Electrochemical Methods -- 8.6.1.1 Polarization Curves -- 8.6.1.2 Voltammetry -- 8.6.1.3 Spectroelectrochemical and Further Techniques -- 8.6.2 Biological Methods -- 8.7 Conclusions -- Acknowledgments -- References -- 9 Materials for Microfluidic Fuel Cells -- 9.1 Introduction -- 9.2 Fundamentals -- 9.3 Membraneless LFFC Designs and the Materials in Use -- 9.3.1 Flow Architecture and Fabrication of Flow-Over Design -- 9.3.2 Flow Architecture and Fabrication of Flow-Through Design -- 9.3.3 Flow Architecture and Fabrication of LFFC with Air-Breathing Cathode -- 9.3.4 Performance Comparison -- 9.4 Fuel, Oxidant, and Electrolytes -- 9.4.1 Fuel Types -- 9.4.2 Oxidant Types -- 9.4.3 Electrolyte Types -- 9.5 Conclusions -- References -- 10 Progress in Electrocatalysts for Direct Alcohol Fuel Cells -- 10.1 Introduction -- 10.2 Developing an Effective Method to Prepare Electrocatalysts -- 10.2.1 Carbon-Supported Platinum -- 10.2.2 Carbon-Supported Platinum-Ruthenium -- 10.3 Electrocatalysts for ORR -- 10.3.1 Highly Active PtFe Electrocatalysts for ORR -- 10.3.2 Methanol-Tolerant PtPd Electrocatalysts for ORR -- 10.4 Electrocatalysts for MOR -- 10.4.1 Composition Screening for Electrocatalysts toward MOR. 10.4.2 Carbon-Supported Platinum-Ruthenium for MOR -- 10.5 Electrocatalysts for Ethanol Electrooxidation -- 10.5.1 Composition Screening for Electrocatalysts toward EOR -- 10.5.2 PtSn/C for Ethanol Electrooxidation -- 10.5.3 IrSn/C for Ethanol Electrooxidation -- 10.6 Conclusions -- References -- Index -- End User License Agreement.
9783527644322
Fuel cells.
Electronic books.
TK2931 -- .M38 2015eb
621.312429
Materials for Low-Temperature Fuel Cells. - 1st ed. - 1 online resource (275 pages) - Materials for Sustainable Energy and Development Series . - Materials for Sustainable Energy and Development Series .
Materials for Low-Temperature Fuel Cells -- Contents -- Series Editor's Preface -- About the Series Editor -- About the Volume Editors -- List of Contributors -- 1 Key Materials for Low-Temperature Fuel Cells: An Introduction -- 2 Alkaline Anion Exchange Membrane Fuel Cells -- 2.1 Fuel Cells -- 2.2 PEM Fuel Cell Principles -- 2.2.1 Equilibrium Kinetics -- 2.2.2 Butler-Volmer Kinetics -- 2.2.3 Exchange Current Density -- 2.2.4 The Fuel Cell Polarization Curve -- 2.3 Alkaline Fuel Cells -- 2.3.1 The ORR Mechanism -- 2.3.2 The HOR in Alkaline -- 2.3.3 The Aqueous Electrolyte AFC -- 2.3.4 The AAEM Fuel Cell -- 2.3.4.1 AAEM Principles -- 2.3.4.2 Alkaline Membranes -- 2.3.4.3 AAEM Fuel Cell Examples -- 2.4 Summary -- References -- 3 Catalyst Support Materials for Proton Exchange Membrane Fuel Cells -- 3.1 Introduction -- 3.2 Current Status of Support Materials and Role of Carbon as Support in Fuel Cells -- 3.3 Novel Carbon Materials as Electrocatalyst Support for Fuel Cells -- 3.3.1 Mesoporous Carbon as Support Materials for Fuel Cells -- 3.3.2 Graphite Nanofibers as Support Materials for Fuel Cells -- 3.3.3 Carbon Nanotubes as Support Materials for Fuel Cells -- 3.3.4 Graphene as Support Materials for Fuel Cells -- 3.3.5 Nitrogen-Doped Carbon Materials -- 3.4 Conductive Metal Oxide as Support Materials -- 3.5 Metal Carbides and Metal Nitrides as Catalyst Supports -- 3.6 Conducting Polymer as Support Materials for Fuel Cells -- 3.7 Conducting Polymer-Grafted Carbon Materials -- 3.8 3M Nanostructured Thin Film as Support Materials for Fuel Cells -- 3.9 Summary and Outlook -- References -- 4 Anode Catalysts for Low-Temperature Direct Alcohol Fuel Cells -- 4.1 Introduction -- 4.2 Anode Catalysts for Direct Methanol Fuel Cells: Improved Performance of Binary and Ternary Catalysts -- 4.2.1 Principles of Direct Methanol Fuel Cells. 4.2.2 Reaction Mechanisms and Catalysts for Methanol Electrooxidation -- 4.3 Anode Catalysts for Direct Ethanol Fuel Cells: Break C-C Bond to Achieve Complete 12-Electron-Transfer Oxidation -- 4.3.1 Principles of PEM-Direct Ethanol Fuel Cells -- 4.3.2 Reaction Mechanisms and Catalysts for Ethanol Electrooxidation -- 4.3.3 Anion Exchange Membrane-Based Direct Ethanol Fuel Cells (AEMDEFCs) -- 4.3.4 Anode Catalysts for AEM-DEFCs -- 4.4 Anode Catalysts for Direct Polyol Fuel Cells (Ethylene Glycol, Glycerol): Cogenerate Electricity and Valuable Chemicals Based on Anion Exchange Membrane Platform -- 4.4.1 Overview of Electrooxidation of Polyols -- 4.4.2 Reaction Mechanisms and Catalysts for Ethylene Glycol Electrooxidation -- 4.4.3 Reaction Mechanisms and Catalysts for Glycerol Electrooxidation -- 4.5 Synthetic Methods of Metal Electrocatalysts -- 4.5.1 Impregnation Method -- 4.5.2 Colloidal Method -- 4.5.2.1 Polyol Method -- 4.5.2.2 Organic-Phase Method -- 4.5.3 Microemulsion Method -- 4.5.4 Other Methods -- 4.6 Carbon Nanomaterials as Anode Catalyst Support -- 4.6.1 Carbon Nanotubes -- 4.6.2 Carbon Nanofibers -- 4.6.3 Ordered Mesoporous Carbons -- 4.6.4 Graphene Sheets -- 4.7 Future Challenges and Opportunities -- Acknowledgments -- References -- 5 Membranes for Direct Methanol Fuel Cells -- 5.1 Introduction -- 5.2 Basic Principles of Direct Methanol Fuel Cell Operation -- 5.3 Membranes for Direct Methanol Fuel Cells -- 5.3.1 Perfluorosulfonic Acid Membranes -- 5.3.2 Poly(styrene)-Based Electrolytes -- 5.3.3 Poly(arylene ether)-Type Polymers -- 5.3.4 Poly(ether ether) Ketone-Type Polymers -- 5.3.5 Polybenzimidazoles -- 5.3.6 Polysulfones and Polyethersulfones -- 5.3.7 Polyimides -- 5.3.8 Grafted Polymer Electrolyte Membranes -- 5.3.9 Block Copolymers -- 5.3.10 Composite Polymer Membranes -- 5.4 Membrane Properties Summary -- 5.5 Conclusions. References -- 6 Hydroxide Exchange Membranes and Ionomers -- 6.1 Introduction -- 6.1.1 Definition -- 6.1.2 Functions -- 6.1.3 Features -- 6.2 Requirements -- 6.2.1 High Hydroxide Conductivity -- 6.2.2 Excellent Chemical Stability -- 6.2.3 Sufficient Physical Stability -- 6.2.4 Controlled Solubility -- 6.2.5 Other Important Properties -- 6.3 Fabrications and Categories -- 6.3.1 Polymer Functionalization -- 6.3.2 Monomer Polymerization -- 6.3.3 Membrane Radiation Grafting -- 6.3.4 Reinforcement Methods -- 6.4 Structure and Properties of Cationic Functional Group -- 6.4.1 Quaternary Nitrogen-Based Cationic Functional Groups -- 6.4.1.1 Tetraalkyl Ammonium -- 6.4.1.2 Cycloalkyl Ammonium -- 6.4.1.3 Pyridinium -- 6.4.1.4 Guanidinium -- 6.4.1.5 Imidazolium -- 6.4.2 Quaternary Phosphorus-Based Cationic Functional Groups -- 6.5 Structure and Properties of Polymer Main Chain -- 6.5.1 Chemical Structure -- 6.5.1.1 Aromatic Main-Chain Polymers -- 6.5.1.2 Aliphatic Main-Chain Polymers -- 6.5.2 Sequential Structure -- 6.6 Structure and Properties of Chemical Cross-Linking -- 6.6.1 Chemical Structure -- 6.6.2 Physical Structure -- 6.7 Prospective -- References -- 7 Materials for Microbial Fuel Cells -- 7.1 Introduction -- 7.2 MFC Configuration -- 7.3 Anode Materials -- 7.3.1 Solid Carbon Materials -- 7.3.2 Granular Carbon Materials -- 7.3.3 Fiber Carbon Materials -- 7.3.4 Porous Carbon Materials -- 7.3.5 Modification of Anode Materials -- 7.4 Cathode -- 7.4.1 Catalyst Binders -- 7.4.2 Diffusion Layers -- 7.4.3 Current Collector -- 7.4.4 Cathode Fouling -- 7.4.5 Cathode Catalysts -- 7.4.5.1 Pt Cathode Modified with Nanomaterials -- 7.4.5.2 Cathode with Non-Pt Metal Catalyst -- 7.4.5.3 Carbon Cathodes -- 7.4.5.4 Conductive Polymers -- 7.4.5.5 Biocathodes -- 7.5 Separators -- 7.5.1 Cation Exchange Membranes -- 7.5.2 Anion Exchange Membranes -- 7.5.3 Biopolar Membranes. 7.5.4 Filtration Membranes -- 7.5.5 Porous Fabrics -- 7.6 Outlook -- References -- 8 Bioelectrochemical Systems -- 8.1 Bioelectrochemical Systems and Bioelectrocatalysis -- 8.2 On the Nature of Microbial Bioelectrocatalysis -- 8.3 Microbial Electron Transfer Mechanisms -- 8.3.1 Direct Electron Transfer -- 8.3.2 Mediated Electron Transfer (MET) -- 8.3.2.1 MET Based on Secondary Metabolites -- 8.3.2.2 MET Based on Primary Metabolites -- 8.4 From Physiology to Technology: Microbial Bioelectrochemical Systems -- 8.5 Application Potential of BES Technology -- 8.6 Characterization of BESs and Microbial Bioelectrocatalysts -- 8.6.1 Electrochemical Methods -- 8.6.1.1 Polarization Curves -- 8.6.1.2 Voltammetry -- 8.6.1.3 Spectroelectrochemical and Further Techniques -- 8.6.2 Biological Methods -- 8.7 Conclusions -- Acknowledgments -- References -- 9 Materials for Microfluidic Fuel Cells -- 9.1 Introduction -- 9.2 Fundamentals -- 9.3 Membraneless LFFC Designs and the Materials in Use -- 9.3.1 Flow Architecture and Fabrication of Flow-Over Design -- 9.3.2 Flow Architecture and Fabrication of Flow-Through Design -- 9.3.3 Flow Architecture and Fabrication of LFFC with Air-Breathing Cathode -- 9.3.4 Performance Comparison -- 9.4 Fuel, Oxidant, and Electrolytes -- 9.4.1 Fuel Types -- 9.4.2 Oxidant Types -- 9.4.3 Electrolyte Types -- 9.5 Conclusions -- References -- 10 Progress in Electrocatalysts for Direct Alcohol Fuel Cells -- 10.1 Introduction -- 10.2 Developing an Effective Method to Prepare Electrocatalysts -- 10.2.1 Carbon-Supported Platinum -- 10.2.2 Carbon-Supported Platinum-Ruthenium -- 10.3 Electrocatalysts for ORR -- 10.3.1 Highly Active PtFe Electrocatalysts for ORR -- 10.3.2 Methanol-Tolerant PtPd Electrocatalysts for ORR -- 10.4 Electrocatalysts for MOR -- 10.4.1 Composition Screening for Electrocatalysts toward MOR. 10.4.2 Carbon-Supported Platinum-Ruthenium for MOR -- 10.5 Electrocatalysts for Ethanol Electrooxidation -- 10.5.1 Composition Screening for Electrocatalysts toward EOR -- 10.5.2 PtSn/C for Ethanol Electrooxidation -- 10.5.3 IrSn/C for Ethanol Electrooxidation -- 10.6 Conclusions -- References -- Index -- End User License Agreement.
9783527644322
Fuel cells.
Electronic books.
TK2931 -- .M38 2015eb
621.312429