Practical Creativity and Innovation in Systems Engineering.
Engel, Avner.
Practical Creativity and Innovation in Systems Engineering. - 1st ed. - 1 online resource (514 pages) - Wiley Series in Systems Engineering and Management Series . - Wiley Series in Systems Engineering and Management Series .
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Part I Introduction -- 1.1 Introduction to Part I -- 1.2 Systems Engineering -- 1.3 Creative Methods -- 1.4 Promoting Innovative Culture -- 1.5 Creative and Innovative Case Study -- 1.6 Back Matter -- 1.7 Bibliography -- Part II Systems Engineering -- 2.1 Introduction to Part II -- 2.2 Basic Systems Engineering Concepts -- 2.2.1 Essence of Systems Engineering -- 2.2.2 Organizations and Projects Concepts -- 2.2.3 System Concepts -- 2.2.4 Life Cycle Concepts -- 2.2.5 Process Concepts -- 2.2.6 Further Reading -- 2.3 Standard 15288 Processes -- 2.3.1 Agreement Process Group -- 2.3.2 Organizational Project-Enabling Process Group -- 2.3.3 Technical Management Process Group -- 2.3.4 Technical Process Group -- 2.3.5 Further Reading -- 2.4 Philosophy of Engineering -- 2.4.1 Engineering and Truth -- 2.4.2 The Logic of Engineering Design -- 2.4.3 The Context and Nature of Engineering Design -- 2.4.4 Roles and Rules and the Modeling of Socio-Technical Systems -- 2.4.5 Engineering as Synthesis - Doing Right Things and Doing Things Right -- 2.4.6 Further Reading -- 2.5 Bibliography -- Part III Creative Methods -- 3.1 Introduction to Part III -- 3.2 Divergent Methods for Individuals -- 3.2.1 Lateral Thinking -- 3.2.2 Resolving Contradictions -- 3.2.3 Biomimicry Engineering -- 3.2.4 Visual Creativity (Three Methods) -- 3.3 Divergent Methods for Teams -- 3.3.1 Classic Brainstorming -- 3.3.2 Six Thinking Hats -- 3.3.3 SWOT Analysis -- 3.3.4 SCAMPER Analysis -- 3.3.5 Focus Groups -- 3.4 Convergent Methods for Individuals -- 3.4.1 PMI Analysis -- 3.4.2 Morphological Analysis -- 3.4.3 Decision Tree Analysis -- 3.4.4 Value Analysis/Value Engineering -- 3.4.5 Pareto Analysis -- 3.5 Convergent Methods for Teams -- 3.5.1 Delphi Method -- 3.5.2 SAST Analysis. 3.5.3 Cause-and-Effect Diagram -- 3.5.4 Kano Model Analysis -- 3.5.5 Group Decisions: Theoretical Background -- 3.5.6 Group Decisions: Practical Methods -- 3.6 Other Creative Methods -- 3.6.1 Process Map Analysis -- 3.6.2 Nine-Screens Analysis -- 3.6.3 Technology Forecasting -- 3.6.4 Design Structure Matrix Analysis -- 3.6.5 Failure Mode Effect Analysis -- 3.6.6 Anticipatory Failure Determination -- 3.6.7 Conflict Analysis and Resolution -- 3.7 Bibliography -- Part IV Promoting Innovative Culture -- 4.1 Introduction to Part IV -- 4.2 Systems Evolution -- 4.2.1 Modeling Systems Evolution - S-Curve -- 4.2.2 Laws of Systems Evolution -- 4.2.3 Further Reading -- 4.3 Modeling the Innovation Process -- 4.3.1 Classes and Types of Innovations -- 4.3.2 Technological Innovation Process -- 4.3.3 Innovation Funding -- 4.3.4 Further Reading -- 4.4 Measuring Creativity and Innovation -- 4.4.1 Defining Innovation Objectives -- 4.4.2 Measuring the Innovation Process -- 4.4.3 Innovation Capability Maturity Model -- 4.4.4 Further Reading -- 4.5 Obstacles to Innovation -- 4.5.1 Human Habits Factors -- 4.5.2 Costs Factors -- 4.5.3 Institutional Factors -- 4.5.4 Knowledge Factors -- 4.5.5 Markets Factors -- 4.5.6 Innovation Obstacles and Classes of Innovations -- 4.5.7 Further Reading -- 4.6 Promoting Organization's Innovative Culture -- 4.6.1 Introduction -- 4.6.2 Innovation and Leadership -- 4.6.3 Innovation and Organization -- 4.6.4 Innovation and People -- 4.6.5 Innovation and Assets -- 4.6.6 Innovation and Culture -- 4.6.7 Innovation and Values -- 4.6.8 Innovation and Processes -- 4.6.9 Innovation and Tools -- 4.6.10 Conclusion: Ascent to Innovation: Practical Steps -- 4.6.11 Further Reading -- 4.7 Pushing Creative Ideas by Individual Engineers -- 4.7.1 Large Organizations Seldom Innovate -- 4.7.2 Characteristics of Innovative Engineers. 4.7.3 Innovation Advice to Creative Engineers -- 4.7.4 Further Reading -- 4.8 Human Diversity and Gendered Innovation -- 4.8.1 Human Diversity -- 4.8.2 Shift in Gender Paradigm -- 4.8.3 Gender Disparity and Innovation Implications -- 4.8.4 Advancing Gendered Innovation -- 4.8.5 Gendered Innovation Example -- 4.8.6 Further Reading -- 4.9 Cognitive Biases and Decision-Making -- 4.9.1 Cognitive Biases -- 4.9.2 Cognitive Biases and Strategic Decisions -- 4.9.3 Further Reading -- 4.10 Bibliography -- Part V Creative and Innovative Case Study -- 5.1 Introduction to Part V -- 5.2 A Problem Seeking a Solution -- 5.2.1 The Problem and Its Inception -- 5.2.2 Initial Funding Effort -- 5.2.3 Further Reading -- 5.3 Gaining Deeper Insights -- 5.3.1 The Problem and the Approach -- 5.3.2 Main Ideas of the Proposed Work -- 5.3.3 Measurable Project Objectives -- 5.3.4 Basis for Predicting the Objectives -- 5.3.5 Systems Adaptability: State-of-the-Art -- 5.3.6 Further Reading -- 5.4 Project Planning -- 5.4.1 Project Planned Activities -- 5.4.2 Detailed Work Package Descriptions -- 5.4.3 Risks and Contingency Plans -- 5.4.4 Management Structure and Procedures -- 5.4.5 Project Participants -- 5.4.6 Resources Needed -- 5.5 The AMISA Project -- 5.5.1 AMISA Initiation -- 5.5.2 Identifying the DFA State-of-the-Art -- 5.5.3 Establishing Requirements for AMISA -- 5.5.4 Implementing a Software Support Tool -- 5.5.5 Developing Six Pilot Projects -- 5.5.6 Generating Deliverables -- 5.5.7 Planning Exploitation beyond AMISA -- 5.5.8 Disseminating Project Results -- 5.5.9 Assessing the AMISA Project -- 5.5.10 Consortium Meetings -- 5.5.11 EC Summary of the Project -- 5.5.12 Further Reading -- 5.6 Architecture Options Theory -- 5.6.1 Financial and Engineering Options -- 5.6.2 Transaction Costs and Interface Costs -- 5.6.3 Architecture Adaptability Value. 5.6.4 Design Structure Matrix -- 5.6.5 Dynamic System Value Modeling -- 5.6.6 Further Reading -- 5.7 Architecture Options Example -- 5.7.1 Step 1: Define the System and Its Environment -- 5.7.2 Step 2: Decompose the System Architecture -- 5.7.3 Step 3: Determine a Time Horizon for System Upgrade -- 5.7.4 Step 4: Determine Option Value (OV) of Each Component -- 5.7.5 Step 5: Determine Interface Cost (IC) of Each Interface -- 5.7.6 Step 6: Model the System by Way of Design Structure Matrix (DSM) -- 5.7.7 Step 7: Compute Base System's AAV -- 5.7.8 Step 8: Define Components' Exclusion Sets -- 5.7.9 Step 9: Optimize the System Architecture (Merging) -- 5.7.10 Step 10: Perform Sensitivity Analyses -- 5.7.11 Step 11: Evaluate Alternative System Architectures -- 5.7.12 Step 12: Define System Variants -- 5.7.13 Step 13: Estimate the Optimal Upgrade Time -- 5.7.14 Further Reading -- 5.8 AMISA - Endnote -- 5.9 Bibliography -- Appendix A Life Cycle Processes versus Recommended Creative Methods -- Appendix B Extended Laws of Technical Systems Evolution -- B.1 Law 1: System Convergence -- B.2 Laws 2 to 7: Systems Merging -- B.3 Law 8: Flow Conductivity -- B.4 Laws 9 to 14: Enhanced Coordination -- B.5 Law 15: Controllability -- B.6 Law 16: Dynamization -- B.7 Law 17: Transition to Super System -- B.8 Law 18: Increasing System Completeness -- B.9 Law 19: Displacement of Human -- B.10 Law 20: Uneven System Evolution -- B.11 Law 21: Technology General Progress -- Appendix C List of Acronyms -- Appendix D Permissions to Use Third-Party Copyright Material -- D.1 Part I: Introduction -- D.2 Part II: Systems Engineering -- D.3 Part III: Creative Methods -- D.4 Part IV: Promoting Innovative Culture -- D.5 Part V: Creative and Innovative Case Study -- D.6 Appendices -- Index -- Wiley Series in Systems Engineering and Management -- EULA.
9781119383352
Creative ability in technology.
Electronic books.
T49.5 .E544 2018
Practical Creativity and Innovation in Systems Engineering. - 1st ed. - 1 online resource (514 pages) - Wiley Series in Systems Engineering and Management Series . - Wiley Series in Systems Engineering and Management Series .
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Part I Introduction -- 1.1 Introduction to Part I -- 1.2 Systems Engineering -- 1.3 Creative Methods -- 1.4 Promoting Innovative Culture -- 1.5 Creative and Innovative Case Study -- 1.6 Back Matter -- 1.7 Bibliography -- Part II Systems Engineering -- 2.1 Introduction to Part II -- 2.2 Basic Systems Engineering Concepts -- 2.2.1 Essence of Systems Engineering -- 2.2.2 Organizations and Projects Concepts -- 2.2.3 System Concepts -- 2.2.4 Life Cycle Concepts -- 2.2.5 Process Concepts -- 2.2.6 Further Reading -- 2.3 Standard 15288 Processes -- 2.3.1 Agreement Process Group -- 2.3.2 Organizational Project-Enabling Process Group -- 2.3.3 Technical Management Process Group -- 2.3.4 Technical Process Group -- 2.3.5 Further Reading -- 2.4 Philosophy of Engineering -- 2.4.1 Engineering and Truth -- 2.4.2 The Logic of Engineering Design -- 2.4.3 The Context and Nature of Engineering Design -- 2.4.4 Roles and Rules and the Modeling of Socio-Technical Systems -- 2.4.5 Engineering as Synthesis - Doing Right Things and Doing Things Right -- 2.4.6 Further Reading -- 2.5 Bibliography -- Part III Creative Methods -- 3.1 Introduction to Part III -- 3.2 Divergent Methods for Individuals -- 3.2.1 Lateral Thinking -- 3.2.2 Resolving Contradictions -- 3.2.3 Biomimicry Engineering -- 3.2.4 Visual Creativity (Three Methods) -- 3.3 Divergent Methods for Teams -- 3.3.1 Classic Brainstorming -- 3.3.2 Six Thinking Hats -- 3.3.3 SWOT Analysis -- 3.3.4 SCAMPER Analysis -- 3.3.5 Focus Groups -- 3.4 Convergent Methods for Individuals -- 3.4.1 PMI Analysis -- 3.4.2 Morphological Analysis -- 3.4.3 Decision Tree Analysis -- 3.4.4 Value Analysis/Value Engineering -- 3.4.5 Pareto Analysis -- 3.5 Convergent Methods for Teams -- 3.5.1 Delphi Method -- 3.5.2 SAST Analysis. 3.5.3 Cause-and-Effect Diagram -- 3.5.4 Kano Model Analysis -- 3.5.5 Group Decisions: Theoretical Background -- 3.5.6 Group Decisions: Practical Methods -- 3.6 Other Creative Methods -- 3.6.1 Process Map Analysis -- 3.6.2 Nine-Screens Analysis -- 3.6.3 Technology Forecasting -- 3.6.4 Design Structure Matrix Analysis -- 3.6.5 Failure Mode Effect Analysis -- 3.6.6 Anticipatory Failure Determination -- 3.6.7 Conflict Analysis and Resolution -- 3.7 Bibliography -- Part IV Promoting Innovative Culture -- 4.1 Introduction to Part IV -- 4.2 Systems Evolution -- 4.2.1 Modeling Systems Evolution - S-Curve -- 4.2.2 Laws of Systems Evolution -- 4.2.3 Further Reading -- 4.3 Modeling the Innovation Process -- 4.3.1 Classes and Types of Innovations -- 4.3.2 Technological Innovation Process -- 4.3.3 Innovation Funding -- 4.3.4 Further Reading -- 4.4 Measuring Creativity and Innovation -- 4.4.1 Defining Innovation Objectives -- 4.4.2 Measuring the Innovation Process -- 4.4.3 Innovation Capability Maturity Model -- 4.4.4 Further Reading -- 4.5 Obstacles to Innovation -- 4.5.1 Human Habits Factors -- 4.5.2 Costs Factors -- 4.5.3 Institutional Factors -- 4.5.4 Knowledge Factors -- 4.5.5 Markets Factors -- 4.5.6 Innovation Obstacles and Classes of Innovations -- 4.5.7 Further Reading -- 4.6 Promoting Organization's Innovative Culture -- 4.6.1 Introduction -- 4.6.2 Innovation and Leadership -- 4.6.3 Innovation and Organization -- 4.6.4 Innovation and People -- 4.6.5 Innovation and Assets -- 4.6.6 Innovation and Culture -- 4.6.7 Innovation and Values -- 4.6.8 Innovation and Processes -- 4.6.9 Innovation and Tools -- 4.6.10 Conclusion: Ascent to Innovation: Practical Steps -- 4.6.11 Further Reading -- 4.7 Pushing Creative Ideas by Individual Engineers -- 4.7.1 Large Organizations Seldom Innovate -- 4.7.2 Characteristics of Innovative Engineers. 4.7.3 Innovation Advice to Creative Engineers -- 4.7.4 Further Reading -- 4.8 Human Diversity and Gendered Innovation -- 4.8.1 Human Diversity -- 4.8.2 Shift in Gender Paradigm -- 4.8.3 Gender Disparity and Innovation Implications -- 4.8.4 Advancing Gendered Innovation -- 4.8.5 Gendered Innovation Example -- 4.8.6 Further Reading -- 4.9 Cognitive Biases and Decision-Making -- 4.9.1 Cognitive Biases -- 4.9.2 Cognitive Biases and Strategic Decisions -- 4.9.3 Further Reading -- 4.10 Bibliography -- Part V Creative and Innovative Case Study -- 5.1 Introduction to Part V -- 5.2 A Problem Seeking a Solution -- 5.2.1 The Problem and Its Inception -- 5.2.2 Initial Funding Effort -- 5.2.3 Further Reading -- 5.3 Gaining Deeper Insights -- 5.3.1 The Problem and the Approach -- 5.3.2 Main Ideas of the Proposed Work -- 5.3.3 Measurable Project Objectives -- 5.3.4 Basis for Predicting the Objectives -- 5.3.5 Systems Adaptability: State-of-the-Art -- 5.3.6 Further Reading -- 5.4 Project Planning -- 5.4.1 Project Planned Activities -- 5.4.2 Detailed Work Package Descriptions -- 5.4.3 Risks and Contingency Plans -- 5.4.4 Management Structure and Procedures -- 5.4.5 Project Participants -- 5.4.6 Resources Needed -- 5.5 The AMISA Project -- 5.5.1 AMISA Initiation -- 5.5.2 Identifying the DFA State-of-the-Art -- 5.5.3 Establishing Requirements for AMISA -- 5.5.4 Implementing a Software Support Tool -- 5.5.5 Developing Six Pilot Projects -- 5.5.6 Generating Deliverables -- 5.5.7 Planning Exploitation beyond AMISA -- 5.5.8 Disseminating Project Results -- 5.5.9 Assessing the AMISA Project -- 5.5.10 Consortium Meetings -- 5.5.11 EC Summary of the Project -- 5.5.12 Further Reading -- 5.6 Architecture Options Theory -- 5.6.1 Financial and Engineering Options -- 5.6.2 Transaction Costs and Interface Costs -- 5.6.3 Architecture Adaptability Value. 5.6.4 Design Structure Matrix -- 5.6.5 Dynamic System Value Modeling -- 5.6.6 Further Reading -- 5.7 Architecture Options Example -- 5.7.1 Step 1: Define the System and Its Environment -- 5.7.2 Step 2: Decompose the System Architecture -- 5.7.3 Step 3: Determine a Time Horizon for System Upgrade -- 5.7.4 Step 4: Determine Option Value (OV) of Each Component -- 5.7.5 Step 5: Determine Interface Cost (IC) of Each Interface -- 5.7.6 Step 6: Model the System by Way of Design Structure Matrix (DSM) -- 5.7.7 Step 7: Compute Base System's AAV -- 5.7.8 Step 8: Define Components' Exclusion Sets -- 5.7.9 Step 9: Optimize the System Architecture (Merging) -- 5.7.10 Step 10: Perform Sensitivity Analyses -- 5.7.11 Step 11: Evaluate Alternative System Architectures -- 5.7.12 Step 12: Define System Variants -- 5.7.13 Step 13: Estimate the Optimal Upgrade Time -- 5.7.14 Further Reading -- 5.8 AMISA - Endnote -- 5.9 Bibliography -- Appendix A Life Cycle Processes versus Recommended Creative Methods -- Appendix B Extended Laws of Technical Systems Evolution -- B.1 Law 1: System Convergence -- B.2 Laws 2 to 7: Systems Merging -- B.3 Law 8: Flow Conductivity -- B.4 Laws 9 to 14: Enhanced Coordination -- B.5 Law 15: Controllability -- B.6 Law 16: Dynamization -- B.7 Law 17: Transition to Super System -- B.8 Law 18: Increasing System Completeness -- B.9 Law 19: Displacement of Human -- B.10 Law 20: Uneven System Evolution -- B.11 Law 21: Technology General Progress -- Appendix C List of Acronyms -- Appendix D Permissions to Use Third-Party Copyright Material -- D.1 Part I: Introduction -- D.2 Part II: Systems Engineering -- D.3 Part III: Creative Methods -- D.4 Part IV: Promoting Innovative Culture -- D.5 Part V: Creative and Innovative Case Study -- D.6 Appendices -- Index -- Wiley Series in Systems Engineering and Management -- EULA.
9781119383352
Creative ability in technology.
Electronic books.
T49.5 .E544 2018