Intensity Modulated Radiation Therapy : A Clinical Overview.
Das, Indra J.
Intensity Modulated Radiation Therapy : A Clinical Overview. - 1st ed. - 1 online resource (360 pages) - IPEM-IOP Series in Physics and Engineering in Medicine and Biology Series . - IPEM-IOP Series in Physics and Engineering in Medicine and Biology Series .
Intro -- Preface -- Author biographies -- Indra J Das -- Nicholas J Sanfilippo -- Antonella Fogliata -- Luca Cozzi -- Acronyms -- Chapter 1 Introduction -- References -- Chapter 2 Beam modulation -- 2.1 Forward planning -- 2.2 Paradigm shift -- 2.3 Simulated annealing -- References -- Chapter 3 Definitions and terminology -- 3.1 Pixel -- 3.2 Voxel -- 3.3 Bixel (beamlet) -- 3.4 Intensity level -- 3.5 Segment -- 3.6 Concept of dose painting -- References -- Chapter 4 IMRT devices -- 4.1 Intensity modulation filter/compensator -- 4.2 Dynamic Jaw -- 4.3 MLC based -- 4.4 Direct aperture optimization (DAO) -- 4.5 Systems for IMRT -- 4.5.1 Peacock-MIMiC -- 4.5.2 Tomotherapy -- References -- Chapter 5 IMRT, IMAT and VMAT -- 5.1 IMRT -- 5.1.1 Step and shoot IMRT -- 5.1.2 Dynamic delivery IMRT -- 5.2 IMAT -- 5.3 Volumetric, modulated arc therapy, VMAT -- 5.4 Outlook -- References -- Chapter 6 Intensity modulated planning process -- 6.1 IMRT planning process -- 6.2 Imaging -- 6.3 Target volume -- 6.4 DVH constraints -- 6.5 Inverse planning -- 6.6 MLC sequencing -- 6.7 Transfer and treatment sequencing -- 6.8 Phantom plan -- 6.9 IMRT PSQA -- 6.10 Treatment verification -- 6.11 Record and verification -- References -- Chapter 7 Contouring -- 7.1 Contouring for intensity modulation inverse planning -- 7.2 Margins -- 7.3 Motion and contouring -- 7.4 Auto-segmentation -- 7.4.1 First generation of auto-segmentation methods (model-based) -- 7.4.2 Second generation of auto-segmentation methods -- 7.4.3 Third generation of auto-segmentation methods (atlas-based) -- 7.4.4 Fourth generation of auto-segmentation methods (deep learning) -- References -- Chapter 8 Treatment planning -- 8.1 Beam (and arc) geometry -- 8.2 The collimator rotation -- 8.3 Non-coplanarity -- 8.4 Flattened and unflattened beams -- 8.5 Modulation degrees and delivery accuracy. 8.6 The feathering: large field splitting and multi-isocentric setup -- 8.6.1 Overlap in the lateral direction (large volumes) -- 8.6.2 Overlap in the longitudinal direction (long volumes) -- 8.7 Artifact handling -- 8.8 The interplay effect -- 8.9 The neutron production and the whole body dose: beam quality -- 8.10 Conclusions on treatment planning -- References -- Chapter 9 Optimization -- 9.1 The inverse planning concept -- 9.2 The goals and the cost function -- 9.3 The optimization objectives -- 9.4 The optimization algorithms -- 9.4.1 The deterministic algorithms -- 9.4.2 The stochastic algorithms -- 9.5 The direct aperture optimization -- 9.6 The biological optimization -- 9.6.1 The radiobiological models for TCP, NTCP, EUD -- 9.7 Benefit and deficiencies in biological optimization -- 9.8 Robust optimization -- References -- Chapter 10 Dose calculation -- 10.1 Required accuracy in dose calculation -- 10.2 Dose calculation algorithms and classification -- 10.2.1 The empirical models -- 10.2.2 The semi-empirical, correction-based algorithms -- 10.2.3 The kernel-based algorithms: pencil beam, AAA, collapsed cone -- 10.2.4 The electron transport explicit algorithms: Monte Carlo, LBTE solvers -- 10.3 Type 'a', 'b', 'c' algorithm classification -- 10.4 Dose-to-medium or dose-to-water? -- 10.5 Dose calculation accuracy in various TPS implementations -- 10.6 Fluence to dose and MLC parameters: another source of uncertainty -- 10.7 The out-of-field dose -- 10.8 Dose calculation with metallic objects -- 10.9 Other elements influencing the dose calculation accuracy -- References -- Chapter 11 Plan variability -- 11.1 Dosimetric variation: the intra- and inter-planner and planning system sources -- 11.2 Knowledge-based planning -- 11.3 Protocol-based automation -- 11.4 Multi-criteria optimization -- 11.5 MCO, a posteriori -- 11.6 MCO, a priori. 11.7 Plan variability conclusion -- References -- Chapter 12 Quality assurance and verification -- 12.1 Theory of comparison -- 12.1.1 Statistical analysis -- 12.1.2 Dice Similarity Coefficient (DSC) -- 12.1.3 Gamma index -- 12.2 Silico method -- 12.3 Measurements -- 12.3.1 Film dosimetry -- 12.3.2 Sun nuclear map check -- 12.3.3 IBA MatriXX -- 12.3.4 PTW Octavius -- 12.3.5 Scandidos Delta4 -- 12.3.6 Electronic Portal Imaging Dosimetry (EPID) -- 12.4 Log-file approach -- 12.5 Artificial intelligence -- 12.6 Outlook -- References -- Chapter 13 IMRT dose prescription and recording -- 13.1 Planning variability -- 13.2 ICRU-83 guidelines -- 13.3 State of compliance -- 13.4 Essentiality in IMRT -- References -- Chapter 14 Tumors of the central nervous system -- 14.1 Epidemiology -- 14.2 Anatomic considerations -- 14.3 Clinical and diagnostic evaluation -- 14.4 Intensity modulated radiation therapy: biologic considerations -- 14.5 Intensity modulated radiation therapy: technical considerations -- 14.6 IMRT for CNS tumors: general considerations -- 14.7 Clinical experience of IMRT in brain tumors -- 14.8 Clinical experience of IMRT in spinal and paraspinal tumors -- 14.9 IMRT for craniospinal irradiation -- References -- Chapter 15 Head and neck cancer -- 15.1 Epidemiology -- 15.2 Anatomy -- 15.3 Nasopharyngeal carcinoma: general considerations -- 15.4 IMRT for nasopharyngeal carcinoma -- 15.5 Oropharyngeal carcinoma: general considerations -- 15.6 IMRT for oropharyngeal carcinoma -- 15.7 Carcinoma of the oral cavity: general considerations -- 15.8 IMRT for oral cavity carcinoma -- 15.9 Cancer of the larynx and hypopharynx: general considerations -- References -- Chapter 16 Lung cancer -- 16.1 Epidemiology -- 16.2 Anatomy -- 16.3 Lung cancer: general considerations -- 16.4 IMRT for lung cancer -- References -- Chapter 17 Breast cancer -- 17.1 Epidemiology. 17.2 Anatomy -- 17.3 Breast cancer: general considerations -- 17.4 IMRT for breast cancer -- References -- Chapter 18 Prostate cancer -- 18.1 Epidemiology -- 18.2 Anatomy -- 18.3 Prostate cancer: general considerations -- 18.4 Prostate cancer IMRT -- References -- Chapter 19 Cervical cancer -- 19.1 Epidemiology -- 19.2 Cervical cancer: general considerations -- 19.3 IMRT for cervical cancer -- References -- Chapter 20 Summary and outlook -- 20.1 Plan automation, adaptive therapy and artificial intelligence: A glance into the crystal ball -- 20.2 Decision-making artificial intelligence (AI) guided radiotherapy -- References.
This book, written by leading researchers and medical doctors in the field, provides an overview of intensity modulation technology and its evolution over the last 35 years. Every aspect of IMRT is covered, from fundamental concepts to advanced processes and clinical applications, and comprehensive references are included.
9780750313353
Radiotherapy.
Electronic books.
RM847 .D37 2020
615.842
Intensity Modulated Radiation Therapy : A Clinical Overview. - 1st ed. - 1 online resource (360 pages) - IPEM-IOP Series in Physics and Engineering in Medicine and Biology Series . - IPEM-IOP Series in Physics and Engineering in Medicine and Biology Series .
Intro -- Preface -- Author biographies -- Indra J Das -- Nicholas J Sanfilippo -- Antonella Fogliata -- Luca Cozzi -- Acronyms -- Chapter 1 Introduction -- References -- Chapter 2 Beam modulation -- 2.1 Forward planning -- 2.2 Paradigm shift -- 2.3 Simulated annealing -- References -- Chapter 3 Definitions and terminology -- 3.1 Pixel -- 3.2 Voxel -- 3.3 Bixel (beamlet) -- 3.4 Intensity level -- 3.5 Segment -- 3.6 Concept of dose painting -- References -- Chapter 4 IMRT devices -- 4.1 Intensity modulation filter/compensator -- 4.2 Dynamic Jaw -- 4.3 MLC based -- 4.4 Direct aperture optimization (DAO) -- 4.5 Systems for IMRT -- 4.5.1 Peacock-MIMiC -- 4.5.2 Tomotherapy -- References -- Chapter 5 IMRT, IMAT and VMAT -- 5.1 IMRT -- 5.1.1 Step and shoot IMRT -- 5.1.2 Dynamic delivery IMRT -- 5.2 IMAT -- 5.3 Volumetric, modulated arc therapy, VMAT -- 5.4 Outlook -- References -- Chapter 6 Intensity modulated planning process -- 6.1 IMRT planning process -- 6.2 Imaging -- 6.3 Target volume -- 6.4 DVH constraints -- 6.5 Inverse planning -- 6.6 MLC sequencing -- 6.7 Transfer and treatment sequencing -- 6.8 Phantom plan -- 6.9 IMRT PSQA -- 6.10 Treatment verification -- 6.11 Record and verification -- References -- Chapter 7 Contouring -- 7.1 Contouring for intensity modulation inverse planning -- 7.2 Margins -- 7.3 Motion and contouring -- 7.4 Auto-segmentation -- 7.4.1 First generation of auto-segmentation methods (model-based) -- 7.4.2 Second generation of auto-segmentation methods -- 7.4.3 Third generation of auto-segmentation methods (atlas-based) -- 7.4.4 Fourth generation of auto-segmentation methods (deep learning) -- References -- Chapter 8 Treatment planning -- 8.1 Beam (and arc) geometry -- 8.2 The collimator rotation -- 8.3 Non-coplanarity -- 8.4 Flattened and unflattened beams -- 8.5 Modulation degrees and delivery accuracy. 8.6 The feathering: large field splitting and multi-isocentric setup -- 8.6.1 Overlap in the lateral direction (large volumes) -- 8.6.2 Overlap in the longitudinal direction (long volumes) -- 8.7 Artifact handling -- 8.8 The interplay effect -- 8.9 The neutron production and the whole body dose: beam quality -- 8.10 Conclusions on treatment planning -- References -- Chapter 9 Optimization -- 9.1 The inverse planning concept -- 9.2 The goals and the cost function -- 9.3 The optimization objectives -- 9.4 The optimization algorithms -- 9.4.1 The deterministic algorithms -- 9.4.2 The stochastic algorithms -- 9.5 The direct aperture optimization -- 9.6 The biological optimization -- 9.6.1 The radiobiological models for TCP, NTCP, EUD -- 9.7 Benefit and deficiencies in biological optimization -- 9.8 Robust optimization -- References -- Chapter 10 Dose calculation -- 10.1 Required accuracy in dose calculation -- 10.2 Dose calculation algorithms and classification -- 10.2.1 The empirical models -- 10.2.2 The semi-empirical, correction-based algorithms -- 10.2.3 The kernel-based algorithms: pencil beam, AAA, collapsed cone -- 10.2.4 The electron transport explicit algorithms: Monte Carlo, LBTE solvers -- 10.3 Type 'a', 'b', 'c' algorithm classification -- 10.4 Dose-to-medium or dose-to-water? -- 10.5 Dose calculation accuracy in various TPS implementations -- 10.6 Fluence to dose and MLC parameters: another source of uncertainty -- 10.7 The out-of-field dose -- 10.8 Dose calculation with metallic objects -- 10.9 Other elements influencing the dose calculation accuracy -- References -- Chapter 11 Plan variability -- 11.1 Dosimetric variation: the intra- and inter-planner and planning system sources -- 11.2 Knowledge-based planning -- 11.3 Protocol-based automation -- 11.4 Multi-criteria optimization -- 11.5 MCO, a posteriori -- 11.6 MCO, a priori. 11.7 Plan variability conclusion -- References -- Chapter 12 Quality assurance and verification -- 12.1 Theory of comparison -- 12.1.1 Statistical analysis -- 12.1.2 Dice Similarity Coefficient (DSC) -- 12.1.3 Gamma index -- 12.2 Silico method -- 12.3 Measurements -- 12.3.1 Film dosimetry -- 12.3.2 Sun nuclear map check -- 12.3.3 IBA MatriXX -- 12.3.4 PTW Octavius -- 12.3.5 Scandidos Delta4 -- 12.3.6 Electronic Portal Imaging Dosimetry (EPID) -- 12.4 Log-file approach -- 12.5 Artificial intelligence -- 12.6 Outlook -- References -- Chapter 13 IMRT dose prescription and recording -- 13.1 Planning variability -- 13.2 ICRU-83 guidelines -- 13.3 State of compliance -- 13.4 Essentiality in IMRT -- References -- Chapter 14 Tumors of the central nervous system -- 14.1 Epidemiology -- 14.2 Anatomic considerations -- 14.3 Clinical and diagnostic evaluation -- 14.4 Intensity modulated radiation therapy: biologic considerations -- 14.5 Intensity modulated radiation therapy: technical considerations -- 14.6 IMRT for CNS tumors: general considerations -- 14.7 Clinical experience of IMRT in brain tumors -- 14.8 Clinical experience of IMRT in spinal and paraspinal tumors -- 14.9 IMRT for craniospinal irradiation -- References -- Chapter 15 Head and neck cancer -- 15.1 Epidemiology -- 15.2 Anatomy -- 15.3 Nasopharyngeal carcinoma: general considerations -- 15.4 IMRT for nasopharyngeal carcinoma -- 15.5 Oropharyngeal carcinoma: general considerations -- 15.6 IMRT for oropharyngeal carcinoma -- 15.7 Carcinoma of the oral cavity: general considerations -- 15.8 IMRT for oral cavity carcinoma -- 15.9 Cancer of the larynx and hypopharynx: general considerations -- References -- Chapter 16 Lung cancer -- 16.1 Epidemiology -- 16.2 Anatomy -- 16.3 Lung cancer: general considerations -- 16.4 IMRT for lung cancer -- References -- Chapter 17 Breast cancer -- 17.1 Epidemiology. 17.2 Anatomy -- 17.3 Breast cancer: general considerations -- 17.4 IMRT for breast cancer -- References -- Chapter 18 Prostate cancer -- 18.1 Epidemiology -- 18.2 Anatomy -- 18.3 Prostate cancer: general considerations -- 18.4 Prostate cancer IMRT -- References -- Chapter 19 Cervical cancer -- 19.1 Epidemiology -- 19.2 Cervical cancer: general considerations -- 19.3 IMRT for cervical cancer -- References -- Chapter 20 Summary and outlook -- 20.1 Plan automation, adaptive therapy and artificial intelligence: A glance into the crystal ball -- 20.2 Decision-making artificial intelligence (AI) guided radiotherapy -- References.
This book, written by leading researchers and medical doctors in the field, provides an overview of intensity modulation technology and its evolution over the last 35 years. Every aspect of IMRT is covered, from fundamental concepts to advanced processes and clinical applications, and comprehensive references are included.
9780750313353
Radiotherapy.
Electronic books.
RM847 .D37 2020
615.842