Receptor Biology.
Roberts, Michael F.
Receptor Biology. - 1st ed. - 1 online resource (267 pages) - New York Academy of Sciences Series . - New York Academy of Sciences Series .
Cover -- Title Page -- Copyright -- Dedication -- Contents -- Acknowledgment -- Part I Introduction -- Chapter 1 Introduction -- 1.1 Receptors and Signaling -- 1.1.1 General Aspects of Signaling -- 1.1.2 Verbal and Physiological Signals -- 1.1.3 Criteria for Recognizing Transmitters and Receptors -- 1.1.4 Agonists -- 1.1.5 Receptors -- 1.1.6 Receptor-Enzyme Similarities -- 1.2 Types of Receptors and Hormones -- 1.2.1 Receptor Superfamilies -- 1.3 Receptors Are the Chemical Expression of Reality -- Chapter 2 The Origins of Chemical Thinking -- 2.1 Overview of Early Pharmacological History -- 2.1.1 The Development of a Chemical Hypothesis -- 2.1.2 Chemical Structure and Drug Action -- 2.1.3 The Site of Drug Action -- 2.2 Modern Pharmacology -- 2.2.1 Langley and Ehrlich: the Origins of the Receptor Concept -- 2.2.2 Maturation of the Receptor Concept -- 2.3 Phylogenetics of Signaling -- 2.3.1 The First Communicators -- Part II Fundamentals -- Chapter 3 Membranes and Proteins -- 3.1 Membranes -- 3.1.1 The Cytoplasmic Membrane - the Importance of Cell Membranes -- 3.1.2 History of Membrane Models -- 3.1.2.1 The Roles of Proteins in Membranes -- 3.1.2.2 Challenges to the Danielli-Davson Model -- 3.1.2.3 A New View of Membrane Proteins -- 3.1.2.4 The Modern Concept of Membranes - the Fluid Mosaic Model -- 3.1.3 Membrane Components -- 3.1.3.1 Membrane Lipids -- 3.1.3.2 Asymmetry and Heterogeneity in Membrane Lipids -- 3.1.3.3 Membrane Construction and Insertion of Proteins -- 3.2 The Nature and Function of Proteins -- 3.2.1 Linear and Three-Dimensional Structures -- 3.2.2 Primary Structure -- 3.2.3 Secondary Structure -- 3.2.4 Tertiary Structure -- 3.2.5 Protein Domains -- 3.2.6 Proteomics -- Chapter 4 Hormones as First Messengers -- 4.1 Hormones and Cellular Communication -- 4.1.1 Discovery of Hormones -- 4.2 Types of Hormones. 4.2.1 Pheromones for Signaling between Individuals -- 4.2.2 Archaea and Bacteria -- 4.2.3 Eukaryotes -- 4.2.3.1 Chromalveolates -- 4.2.3.2 Unikonts - Amoebozoa, Fungi, Animals -- 4.2.3.3 Invertebrate Pheromones -- 4.2.3.4 Vertebrate Pheromones -- 4.3 Vertebrate Hormones and Transmitters -- 4.3.1 Peptide and Non-Peptide Agonists -- 4.3.1.1 Peptides -- 4.3.1.2 Non-peptides -- 4.3.2 Peptide Hormones of the G-Protein-Coupled Receptors -- 4.3.2.1 Hypothalamic-Pituitary Axis -- 4.3.2.2 The Anterior Pituitary Trophic Hormones -- 4.3.3 Other Neural Peptides -- 4.3.3.1 Opioids -- 4.3.3.2 Non-Opioid Transmitter Peptides -- 4.3.4 Peptides from Non-Neural Sources -- 4.3.4.1 Digestive Tract Hormones -- 4.3.4.2 Hormones from Vascular Tissue -- 4.3.4.3 Hormones from the Blood -- 4.3.4.4 Peptide Hormones from Reproductive Tissues -- 4.3.4.5 Hormones from Other Tissues -- 4.3.5 Non-Peptides Acting on G-Protein-Coupled Receptors -- 4.3.5.1 Transmitters Derived from Amino Acids -- 4.3.5.2 Transmitters Derived from Nucleotides -- 4.3.5.3 Transmitters Derived from Membrane Lipids - Prostaglandins and Cannabinoids -- 4.3.6 Transmitters of the Ion Channels -- 4.3.7 Hormones of the Receptor Kinases - Growth Factor Receptors -- 4.3.7.1 Insulin -- 4.3.7.2 Insulin-Like Growth Factors -- 4.3.7.3 Natriuretic Peptides -- 4.3.7.4 Peptide Signal Molecules Important in Embryogenesis -- 4.3.7.5 Pituitary Gland Hormones - Somatotropin and Prolactin -- 4.3.8 Hormones of the Nuclear Receptors -- 4.3.8.1 Steroids -- 4.3.8.2 Non-Steroid Nuclear Hormones -- 4.4 Analgesics and Venoms as Receptor Ligands -- Chapter 5 Receptor Theory -- 5.1 The Materialization of Receptors -- 5.2 Receptor Mechanisms -- 5.2.1 Binding of Agonist to Receptor -- 5.2.1.1 Bonds -- 5.3 Binding Theory -- 5.3.1 Early Approaches to Understanding Receptor Action -- 5.3.1.1 The Occupancy Model. 5.3.1.2 Processes That Follow Receptor Activation -- 5.3.1.3 Efficacy and Spare Receptors -- 5.3.2 Modern Approaches to Receptor Theory -- 5.3.2.1 The Two-State Model -- 5.3.2.2 The Ternary Complex Model -- 5.3.2.3 Protean Agonism -- 5.3.2.4 Cubic Ternary Complex (CTC) Model -- 5.3.3 Summary of Model States -- 5.4 Visualizing Receptor Structure and Function -- 5.4.1 Determination of Receptor Kd -- 5.4.1.1 Schild Analysis -- 5.4.2 Visualizing Ligand Binding -- 5.4.2.1 Receptor Preparation -- 5.4.2.2 Equilibrium Binding Studies -- 5.4.2.3 Competition Studies -- 5.4.3 X-ray Crystallography of Native and Agonist-Bound Receptors -- 5.4.4 Probe Tagging (Fluorescent and Photoaffinity) -- 5.5 Proteomics Approaches to Receptor Efficacy -- 5.6 Physical Factors Affecting Receptor Binding -- 5.6.1 Temperature -- 5.6.2 Relation of Agonist Affinity and Efficacy to Distance Traveled Following Release -- Part III Receptor Types and Function63 -- Chapter 6 Transduction I: Ion Channels and Transporters -- 6.1 Introduction -- 6.1.1 Family Relationships -- 6.2 Small Molecule Channels -- 6.2.1 Osmotic and Stretch Detectors -- 6.2.2 Voltage-Gated Cation Channels -- 6.2.2.1 History of Studies on Voltage-Gated Channels -- 6.2.2.2 Structure and Physiology of Ion Channels -- 6.2.3 Potassium Channels -- 6.2.4 Sodium Channels -- 6.2.4.1 Bacterial Na+ Channels -- 6.2.4.2 Vertebrate Na+ Channels -- 6.2.5 Calcium Channels -- 6.2.6 Non-Voltage-Gated Cation Channels - Transient Receptor Potential (TRP) Channels -- 6.3 Transporters -- 6.3.1 Pumps and Facilitated Diffusion -- 6.3.1.1 The SLC Proteins -- 6.3.1.2 The Pumps -- 6.3.2 The Chloride Channel -- 6.4 Major Intrinsic Proteins -- 6.4.1 Water Channels -- 6.4.2 Glycerol Transporters -- 6.5 Ligand-Gated Ion Channels -- 6.5.1 Four-TM Domains - the Cys-Loop Receptors -- 6.5.1.1 The Four-TM Channels for Cations. 6.5.1.2 The Four-TM Channels for Anions -- 6.5.2 Three-TM Domains - Ionotropic Glutamate Receptors -- 6.5.2.1 Glutamate-Gated Channels -- 6.5.2.2 N-Methyl-D-aspartate (NMDA) Receptor -- 6.5.2.3 Non-NMDA Receptors -- 6.5.3 Two-TM Domains - ATP-Gated Receptors (P2X) -- Chapter 7 Transduction II: G-Protein-Coupled Receptors -- 7.1 Introduction -- 7.1.1 Receptor Function -- 7.1.2 Sensory Transduction -- 7.1.2.1 Chemoreception in Non-Mammals -- 7.1.2.2 Chemoreception in Mammals -- 7.2 Families of G-Protein-Coupled Receptors -- 7.3 Transduction Mechanisms -- 7.3.1 Discovery of Receptor Control of Metabolism - Cyclic AMP and G Proteins -- 7.3.1.1 Components of the Process of Metabolic Activation -- 7.3.1.2 Discovery of Cyclic AMP -- 7.3.1.3 Discovery of G Proteins -- 7.3.2 Actions of G Proteins -- 7.3.2.1 G-Alpha Proteins -- 7.3.2.2 Roles of the Beta and Gamma Subunits -- 7.3.3 Proteins That Enhance (GEF) or Inhibit (GAP) GTP Binding -- 7.3.3.1 GEF Protein -- 7.3.3.2 GAP Protein -- 7.3.4 Signal Amplification -- 7.3.5 Signal Cessation - Several Processes Decrease Receptor Activity -- 7.3.6 Interactions between Receptors and G Proteins -- 7.3.7 Summary of Actions of GPCRs: Agonists, Receptors, G Proteins, and Signaling Cascades -- 7.4 The Major Families of G Protein-Coupled Receptors -- 7.4.1 Family A - Rhodopsin-Like -- 7.4.1.1 The a Subfamily -- 7.4.1.2 The B Subfamily -- 7.4.1.3 The y Subfamily -- 7.4.1.4 The Subfamily -- 7.4.2 Family B - Secretin-Like -- 7.4.3 Family C - Metabotropic Glutamate and Sweet/Umami Taste Receptors -- 7.4.3.1 Taste 1 Receptors (T1Rs) -- 7.4.3.2 Calcium-Sensing Receptors -- 7.4.4 Family D - Adhesion Receptors -- 7.4.5 Family F - Frizzled-Smoothened Receptors -- 7.4.6 Family E - Cyclic AMP Receptors -- 7.4.7 Other G-Protein-Coupled Receptor Types in Eukaryotes -- 7.4.7.1 Yeast Mating Pheromone Receptors. 7.4.7.2 Insect Taste Receptors -- 7.4.7.3 Nematode Chemoreceptors -- Chapter 8 Transduction III: Receptor Kinases and Immunoglobulins -- 8.1 Protein Kinases -- 8.2 Receptors for Cell Division and Metabolism -- 8.2.1 Overview of Family Members -- 8.2.2 Overall Functions of RTK -- 8.2.2.1 Extracellular Domains -- 8.2.2.2 Intracellular Domains -- 8.2.3 Receptor Tyrosine Kinase Subfamilies -- 8.2.3.1 EGF Receptor Subfamily -- 8.2.3.2 Insulin Receptor Subfamily -- 8.2.3.3 FGF and PDGF Receptor Subfamilies -- 8.2.3.4 NGF Receptor Subfamily -- 8.3 Receptor Serine/Threonine Kinases -- 8.3.1 Transforming Growth Factor-Beta (TGF-B) Receptor -- 8.4 The Guanylyl Cyclase Receptor Subfamily - Natriuretic Peptide Receptors -- 8.5 Non-Kinase Molecules - LDL Receptors -- 8.5.1 Cholesterol Transport -- 8.5.2 The Low-Density Lipoprotein (LDL) Receptor -- 8.5.2.1 Clathrin-Coated Pits -- 8.6 Cell-Cell Contact Signaling -- 8.6.1 Notch-Delta Signaling -- 8.7 Immune System Receptors, Antibodies, and Cytokines -- 8.7.1 The Innate Immune Responses -- 8.7.2 The Cells and Molecules of the Adaptive Immune System -- 8.7.3 T-Cell Receptors and Immunoglobulins -- 8.7.4 Cell-Surface Molecules -- 8.7.4.1 The MHC Proteins -- 8.7.4.2 Receptors of the B and T Cells -- Chapter 9 Transduction IV: Nuclear Receptors -- 9.1 Introduction -- 9.2 Genomic Actions of Nuclear Receptors -- 9.2.1 Families of Nuclear Receptors -- 9.2.2 Transcription Control -- 9.2.3 Constitutively Active Nuclear Receptors -- 9.2.4 Liganded Receptors -- 9.2.5 History of Steroid Receptor Studies -- 9.2.6 Receptor Structure -- 9.2.7 The Ligand-Binding Module -- 9.2.8 The DNA-Binding Module -- 9.2.9 Specific Nuclear Actions -- 9.2.9.1 Family 1 - Thyroid Hormone and Vitamins A and D Receptors -- 9.2.9.2 Family 2 - Fatty Acid (HNF4) and Retinoic X Receptors (RXR). 9.2.9.3 Family 3 - Steroid Receptors for Estrogens, Androgens, Progestogens, Mineralocorticoids, and Glucocorticoids.
9783527800155
Binding sites (Biochemistry).
Cell receptors.
Ligands (Biochemistry).
Nuclear receptors (Biochemistry).
Electronic books.
QH603.C43 R63 2016
Receptor Biology. - 1st ed. - 1 online resource (267 pages) - New York Academy of Sciences Series . - New York Academy of Sciences Series .
Cover -- Title Page -- Copyright -- Dedication -- Contents -- Acknowledgment -- Part I Introduction -- Chapter 1 Introduction -- 1.1 Receptors and Signaling -- 1.1.1 General Aspects of Signaling -- 1.1.2 Verbal and Physiological Signals -- 1.1.3 Criteria for Recognizing Transmitters and Receptors -- 1.1.4 Agonists -- 1.1.5 Receptors -- 1.1.6 Receptor-Enzyme Similarities -- 1.2 Types of Receptors and Hormones -- 1.2.1 Receptor Superfamilies -- 1.3 Receptors Are the Chemical Expression of Reality -- Chapter 2 The Origins of Chemical Thinking -- 2.1 Overview of Early Pharmacological History -- 2.1.1 The Development of a Chemical Hypothesis -- 2.1.2 Chemical Structure and Drug Action -- 2.1.3 The Site of Drug Action -- 2.2 Modern Pharmacology -- 2.2.1 Langley and Ehrlich: the Origins of the Receptor Concept -- 2.2.2 Maturation of the Receptor Concept -- 2.3 Phylogenetics of Signaling -- 2.3.1 The First Communicators -- Part II Fundamentals -- Chapter 3 Membranes and Proteins -- 3.1 Membranes -- 3.1.1 The Cytoplasmic Membrane - the Importance of Cell Membranes -- 3.1.2 History of Membrane Models -- 3.1.2.1 The Roles of Proteins in Membranes -- 3.1.2.2 Challenges to the Danielli-Davson Model -- 3.1.2.3 A New View of Membrane Proteins -- 3.1.2.4 The Modern Concept of Membranes - the Fluid Mosaic Model -- 3.1.3 Membrane Components -- 3.1.3.1 Membrane Lipids -- 3.1.3.2 Asymmetry and Heterogeneity in Membrane Lipids -- 3.1.3.3 Membrane Construction and Insertion of Proteins -- 3.2 The Nature and Function of Proteins -- 3.2.1 Linear and Three-Dimensional Structures -- 3.2.2 Primary Structure -- 3.2.3 Secondary Structure -- 3.2.4 Tertiary Structure -- 3.2.5 Protein Domains -- 3.2.6 Proteomics -- Chapter 4 Hormones as First Messengers -- 4.1 Hormones and Cellular Communication -- 4.1.1 Discovery of Hormones -- 4.2 Types of Hormones. 4.2.1 Pheromones for Signaling between Individuals -- 4.2.2 Archaea and Bacteria -- 4.2.3 Eukaryotes -- 4.2.3.1 Chromalveolates -- 4.2.3.2 Unikonts - Amoebozoa, Fungi, Animals -- 4.2.3.3 Invertebrate Pheromones -- 4.2.3.4 Vertebrate Pheromones -- 4.3 Vertebrate Hormones and Transmitters -- 4.3.1 Peptide and Non-Peptide Agonists -- 4.3.1.1 Peptides -- 4.3.1.2 Non-peptides -- 4.3.2 Peptide Hormones of the G-Protein-Coupled Receptors -- 4.3.2.1 Hypothalamic-Pituitary Axis -- 4.3.2.2 The Anterior Pituitary Trophic Hormones -- 4.3.3 Other Neural Peptides -- 4.3.3.1 Opioids -- 4.3.3.2 Non-Opioid Transmitter Peptides -- 4.3.4 Peptides from Non-Neural Sources -- 4.3.4.1 Digestive Tract Hormones -- 4.3.4.2 Hormones from Vascular Tissue -- 4.3.4.3 Hormones from the Blood -- 4.3.4.4 Peptide Hormones from Reproductive Tissues -- 4.3.4.5 Hormones from Other Tissues -- 4.3.5 Non-Peptides Acting on G-Protein-Coupled Receptors -- 4.3.5.1 Transmitters Derived from Amino Acids -- 4.3.5.2 Transmitters Derived from Nucleotides -- 4.3.5.3 Transmitters Derived from Membrane Lipids - Prostaglandins and Cannabinoids -- 4.3.6 Transmitters of the Ion Channels -- 4.3.7 Hormones of the Receptor Kinases - Growth Factor Receptors -- 4.3.7.1 Insulin -- 4.3.7.2 Insulin-Like Growth Factors -- 4.3.7.3 Natriuretic Peptides -- 4.3.7.4 Peptide Signal Molecules Important in Embryogenesis -- 4.3.7.5 Pituitary Gland Hormones - Somatotropin and Prolactin -- 4.3.8 Hormones of the Nuclear Receptors -- 4.3.8.1 Steroids -- 4.3.8.2 Non-Steroid Nuclear Hormones -- 4.4 Analgesics and Venoms as Receptor Ligands -- Chapter 5 Receptor Theory -- 5.1 The Materialization of Receptors -- 5.2 Receptor Mechanisms -- 5.2.1 Binding of Agonist to Receptor -- 5.2.1.1 Bonds -- 5.3 Binding Theory -- 5.3.1 Early Approaches to Understanding Receptor Action -- 5.3.1.1 The Occupancy Model. 5.3.1.2 Processes That Follow Receptor Activation -- 5.3.1.3 Efficacy and Spare Receptors -- 5.3.2 Modern Approaches to Receptor Theory -- 5.3.2.1 The Two-State Model -- 5.3.2.2 The Ternary Complex Model -- 5.3.2.3 Protean Agonism -- 5.3.2.4 Cubic Ternary Complex (CTC) Model -- 5.3.3 Summary of Model States -- 5.4 Visualizing Receptor Structure and Function -- 5.4.1 Determination of Receptor Kd -- 5.4.1.1 Schild Analysis -- 5.4.2 Visualizing Ligand Binding -- 5.4.2.1 Receptor Preparation -- 5.4.2.2 Equilibrium Binding Studies -- 5.4.2.3 Competition Studies -- 5.4.3 X-ray Crystallography of Native and Agonist-Bound Receptors -- 5.4.4 Probe Tagging (Fluorescent and Photoaffinity) -- 5.5 Proteomics Approaches to Receptor Efficacy -- 5.6 Physical Factors Affecting Receptor Binding -- 5.6.1 Temperature -- 5.6.2 Relation of Agonist Affinity and Efficacy to Distance Traveled Following Release -- Part III Receptor Types and Function63 -- Chapter 6 Transduction I: Ion Channels and Transporters -- 6.1 Introduction -- 6.1.1 Family Relationships -- 6.2 Small Molecule Channels -- 6.2.1 Osmotic and Stretch Detectors -- 6.2.2 Voltage-Gated Cation Channels -- 6.2.2.1 History of Studies on Voltage-Gated Channels -- 6.2.2.2 Structure and Physiology of Ion Channels -- 6.2.3 Potassium Channels -- 6.2.4 Sodium Channels -- 6.2.4.1 Bacterial Na+ Channels -- 6.2.4.2 Vertebrate Na+ Channels -- 6.2.5 Calcium Channels -- 6.2.6 Non-Voltage-Gated Cation Channels - Transient Receptor Potential (TRP) Channels -- 6.3 Transporters -- 6.3.1 Pumps and Facilitated Diffusion -- 6.3.1.1 The SLC Proteins -- 6.3.1.2 The Pumps -- 6.3.2 The Chloride Channel -- 6.4 Major Intrinsic Proteins -- 6.4.1 Water Channels -- 6.4.2 Glycerol Transporters -- 6.5 Ligand-Gated Ion Channels -- 6.5.1 Four-TM Domains - the Cys-Loop Receptors -- 6.5.1.1 The Four-TM Channels for Cations. 6.5.1.2 The Four-TM Channels for Anions -- 6.5.2 Three-TM Domains - Ionotropic Glutamate Receptors -- 6.5.2.1 Glutamate-Gated Channels -- 6.5.2.2 N-Methyl-D-aspartate (NMDA) Receptor -- 6.5.2.3 Non-NMDA Receptors -- 6.5.3 Two-TM Domains - ATP-Gated Receptors (P2X) -- Chapter 7 Transduction II: G-Protein-Coupled Receptors -- 7.1 Introduction -- 7.1.1 Receptor Function -- 7.1.2 Sensory Transduction -- 7.1.2.1 Chemoreception in Non-Mammals -- 7.1.2.2 Chemoreception in Mammals -- 7.2 Families of G-Protein-Coupled Receptors -- 7.3 Transduction Mechanisms -- 7.3.1 Discovery of Receptor Control of Metabolism - Cyclic AMP and G Proteins -- 7.3.1.1 Components of the Process of Metabolic Activation -- 7.3.1.2 Discovery of Cyclic AMP -- 7.3.1.3 Discovery of G Proteins -- 7.3.2 Actions of G Proteins -- 7.3.2.1 G-Alpha Proteins -- 7.3.2.2 Roles of the Beta and Gamma Subunits -- 7.3.3 Proteins That Enhance (GEF) or Inhibit (GAP) GTP Binding -- 7.3.3.1 GEF Protein -- 7.3.3.2 GAP Protein -- 7.3.4 Signal Amplification -- 7.3.5 Signal Cessation - Several Processes Decrease Receptor Activity -- 7.3.6 Interactions between Receptors and G Proteins -- 7.3.7 Summary of Actions of GPCRs: Agonists, Receptors, G Proteins, and Signaling Cascades -- 7.4 The Major Families of G Protein-Coupled Receptors -- 7.4.1 Family A - Rhodopsin-Like -- 7.4.1.1 The a Subfamily -- 7.4.1.2 The B Subfamily -- 7.4.1.3 The y Subfamily -- 7.4.1.4 The Subfamily -- 7.4.2 Family B - Secretin-Like -- 7.4.3 Family C - Metabotropic Glutamate and Sweet/Umami Taste Receptors -- 7.4.3.1 Taste 1 Receptors (T1Rs) -- 7.4.3.2 Calcium-Sensing Receptors -- 7.4.4 Family D - Adhesion Receptors -- 7.4.5 Family F - Frizzled-Smoothened Receptors -- 7.4.6 Family E - Cyclic AMP Receptors -- 7.4.7 Other G-Protein-Coupled Receptor Types in Eukaryotes -- 7.4.7.1 Yeast Mating Pheromone Receptors. 7.4.7.2 Insect Taste Receptors -- 7.4.7.3 Nematode Chemoreceptors -- Chapter 8 Transduction III: Receptor Kinases and Immunoglobulins -- 8.1 Protein Kinases -- 8.2 Receptors for Cell Division and Metabolism -- 8.2.1 Overview of Family Members -- 8.2.2 Overall Functions of RTK -- 8.2.2.1 Extracellular Domains -- 8.2.2.2 Intracellular Domains -- 8.2.3 Receptor Tyrosine Kinase Subfamilies -- 8.2.3.1 EGF Receptor Subfamily -- 8.2.3.2 Insulin Receptor Subfamily -- 8.2.3.3 FGF and PDGF Receptor Subfamilies -- 8.2.3.4 NGF Receptor Subfamily -- 8.3 Receptor Serine/Threonine Kinases -- 8.3.1 Transforming Growth Factor-Beta (TGF-B) Receptor -- 8.4 The Guanylyl Cyclase Receptor Subfamily - Natriuretic Peptide Receptors -- 8.5 Non-Kinase Molecules - LDL Receptors -- 8.5.1 Cholesterol Transport -- 8.5.2 The Low-Density Lipoprotein (LDL) Receptor -- 8.5.2.1 Clathrin-Coated Pits -- 8.6 Cell-Cell Contact Signaling -- 8.6.1 Notch-Delta Signaling -- 8.7 Immune System Receptors, Antibodies, and Cytokines -- 8.7.1 The Innate Immune Responses -- 8.7.2 The Cells and Molecules of the Adaptive Immune System -- 8.7.3 T-Cell Receptors and Immunoglobulins -- 8.7.4 Cell-Surface Molecules -- 8.7.4.1 The MHC Proteins -- 8.7.4.2 Receptors of the B and T Cells -- Chapter 9 Transduction IV: Nuclear Receptors -- 9.1 Introduction -- 9.2 Genomic Actions of Nuclear Receptors -- 9.2.1 Families of Nuclear Receptors -- 9.2.2 Transcription Control -- 9.2.3 Constitutively Active Nuclear Receptors -- 9.2.4 Liganded Receptors -- 9.2.5 History of Steroid Receptor Studies -- 9.2.6 Receptor Structure -- 9.2.7 The Ligand-Binding Module -- 9.2.8 The DNA-Binding Module -- 9.2.9 Specific Nuclear Actions -- 9.2.9.1 Family 1 - Thyroid Hormone and Vitamins A and D Receptors -- 9.2.9.2 Family 2 - Fatty Acid (HNF4) and Retinoic X Receptors (RXR). 9.2.9.3 Family 3 - Steroid Receptors for Estrogens, Androgens, Progestogens, Mineralocorticoids, and Glucocorticoids.
9783527800155
Binding sites (Biochemistry).
Cell receptors.
Ligands (Biochemistry).
Nuclear receptors (Biochemistry).
Electronic books.
QH603.C43 R63 2016