ORPP logo

Electric and Hybrid Vehicles : Technologies, Modeling and Control - a Mechatronic Approach.

Khajepour, Amir.

Electric and Hybrid Vehicles : Technologies, Modeling and Control - a Mechatronic Approach. - 1st ed. - 1 online resource (433 pages) - New York Academy of Sciences Series . - New York Academy of Sciences Series .

Electric and Hybrid Vehicles: Technologies, Modeling and Control: A Mechatronic Approach -- Contents -- Preface -- Acknowledgments -- 1 Introduction to Vehicle Propulsion and Powertrain Technologies -- 1.1 History of Vehicle Development -- 1.2 Internal Combustion Engine Vehicles (ICEVs) -- 1.2.1 The Four-Stroke Gasoline Engine -- 1.2.2 The Four-Stroke Diesel Engine -- 1.2.3 ICE Performance Characteristics -- 1.2.4 ICE Vehicle Emissions -- 1.3 Vehicle Emission Control Technologies -- 1.3.1 Advanced Engine Design -- 1.3.2 Catalytic Converters -- 1.3.3 The Diesel Particulate Filter (DPF) -- 1.3.4 Exhaust Gas Recirculation (EGR) -- 1.3.5 Crankcase Emission Control System -- 1.4 Vehicles with Alternative Fuels -- 1.4.1 Natural Gas Vehicles (NGVs) -- 1.4.2 Liquefied Petroleum Gas Vehicles (LPGVs) -- 1.4.3 Biodiesel -- 1.4.4 Hydrogen -- 1.5 Powertrain Technologies -- 1.5.1 Rear-Wheel Drive Powertrains -- 1.5.2 Front-Wheel Drive (FWD) Powertrains -- 1.5.3 Multi-Wheel Drive Powertrains -- 1.6 Transmission Systems -- 1.6.1 Manual Transmission/Transaxle Systems -- 1.6.2 Automatic Transmission/Transaxle Systems -- 1.6.3 Automated Manual Transmissions (AMTs) -- 1.6.4 Continuous Variable Transmissions (CVTs) -- 1.7 Drivetrain and Differentials -- 1.7.1 Open Differentials -- 1.7.2 Limited Slip Differentials -- 1.7.3 Locking Differentials -- 1.7.4 Transfer Case Differentials -- Problems -- References -- 2 Electric and Hybrid Powertrain Technologies -- 2.1 Introduction -- 2.2 Battery Electric Vehicles (BEVs) -- 2.2.1 The BEV Powertrain Configuration -- 2.2.2 Electric Traction Motors -- 2.2.3 Energy Sources and Storages -- 2.2.4 Power Electronic Converters -- 2.2.5 Power Bus -- 2.2.6 Regenerative Braking System -- 2.3 Fuel-Cell Electric Vehicles (FCEVs) -- 2.3.1 Fuel-Cell Technologies -- 2.4 Hybrid Electric Vehicles -- 2.4.1 Degree of Hybridization. 2.4.2 Parallel Hybrid Configuration -- 2.4.3 Series Hybrid Configuration -- 2.4.4 Power-Split Configuration -- 2.4.5 Compound Hybrid Configuration -- 2.5 Plug-in Hybrid Electric Vehicles (PHEVs) -- 2.6 Hybrid Hydraulic Vehicles (HHVs) -- 2.7 Pneumatic Hybrid Vehicles (PHVs) -- 2.8 Power/Energy Management Systems -- 2.9 Summary -- Problems -- References -- 3 Body and Chassis Technologies and Design -- 3.1 Introduction -- 3.2 General Configuration of Automobiles -- 3.3 Body and Chassis Fundamentals -- 3.3.1 General Packaging -- 3.3.2 Design Criteria -- 3.3.3 Design Loads -- 3.4 Different Types of Structural Systems -- 3.4.1 Body-on-Frame Construction -- 3.4.2 Backbone Construction -- 3.4.3 Space Frame Construction -- 3.4.4 Unibody Construction -- 3.5 Body and Chassis Materials -- 3.5.1 Low Carbon Steel -- 3.5.2 Advanced High Strength Steels -- 3.5.3 Nonferrous Metals -- 3.5.4 Nonmetallic Materials -- 3.5.5 Multi-Material Approach in Car Body Design -- 3.6 Specific Considerations in Body and Chassis Design of Electric and Hybrid Electric Vehicles -- 3.6.1 Packaging -- 3.6.2 Material Selection -- 3.6.3 Aerodynamics -- 3.7 The Chassis Systems of Electric and Hybrid Electric Vehicles -- 3.7.1 The Suspension System -- 3.7.2 The Steering System -- 3.7.3 The Braking System -- Problems -- References -- 4 Vehicle Dynamics Fundamentals -- 4.1 Introduction -- 4.2 Concepts and Terminology -- 4.2.1 Evaluation Criteria for Vehicle Dynamics -- 4.2.2 Weights and Dimensions -- 4.3 Vehicle Kinematics -- 4.3.1 Vehicle Coordinate Systems -- 4.3.2 Vehicle Motions -- 4.3.3 Longitudinal and Lateral Slips -- 4.3.4 Planar Vehicle Kinematics -- 4.3.5 Three-Dimensional Vehicle Kinematics -- 4.3.6 Vehicle Forces and Moments -- 4.4 Tire Mechanics and Modeling -- 4.4.1 Tire Characteristic Curves -- 4.4.2 Tire Models -- 4.4.3 The Magic Formula (FM) Tire Model -- Problems. References -- 5 Modelling and Characteristics of EV/HEV Powertrains Components -- 5.1 Introduction -- 5.2 ICE Performance Characteristics -- 5.2.1 Power and Torque Generation -- 5.2.2 Mean Effective Pressure -- 5.2.3 Specific Fuel Consumption -- 5.2.4 Fuel Conversion Efficiency -- 5.2.5 Mechanical Efficiency -- 5.2.6 Air-Fuel Ratio -- 5.2.7 Volumetric Efficiency -- 5.2.8 Compression Ratio -- 5.2.9 Specific Emissions -- 5.2.10 Relationships between ICE Performance Characteristics -- 5.3 Electric Motor Performance Characteristics -- 5.3.1 Power and Torque Generation -- 5.3.2 Efficiency -- 5.3.3 DC Motors -- 5.3.4 Induction AC Motors -- 5.3.5 Steady-State Performance Analysis -- 5.3.6 Permanent-Magnet AC Motors -- 5.4 Battery Performance Characteristics -- 5.4.1 Battery Capacity -- 5.4.2 Open Circuit and Terminal Voltages -- 5.4.3 Charge/Discharge Rate -- 5.4.4 State of Charge/Discharge -- 5.4.5 Depth of Discharge -- 5.4.6 Battery Energy Density and Specific Energy -- 5.4.7 Battery Power Density and Specific Power -- 5.4.8 Battery Efficiency -- 5.5 Transmission and Drivetrain Characteristics -- 5.5.1 Gearboxes -- 5.5.2 Planetary Gear Set -- 5.5.3 V-Belt CVTs -- 5.5.4 Driveline Losses -- 5.6 Regenerative Braking Characteristics -- 5.7 Driving Cycles -- 5.7.1 EPA Driving Cycles -- 5.7.2 The European NEDC -- 5.7.3 The Japan 10-15 Mode -- Problems -- References -- 6 Modeling and Analysis of Electric and Hybrid Electric Vehicles' Propulsion and Braking -- 6.1 Introduction -- 6.2 The Longitudinal Dynamics Equation of Motion -- 6.3 Vehicle Propulsion Modeling and Analysis -- 6.3.1 Internal Combustion Engine Vehicles -- 6.3.2 Electric Vehicles -- 6.3.3 Hybrid Electric Vehicles -- 6.4 Vehicle Braking Modeling and Analysis -- Problems -- 7 Handling Analysis of Electric and Hybrid Electric Vehicles -- 7.1 Introduction -- 7.2 Simplified Handling Models. 7.2.1 Single Track Linear Handling Model -- 7.2.2 Analytical Handling Analysis -- 7.2.3 Roll and Pitch Dynamics Models -- 7.3 Comprehensive Handling Model of EVs and HEVs -- 7.3.1 Vehicle Kinetics Model -- 7.3.2 The Tire Model -- 7.3.3 Powertrain and Wheel Dynamics Model -- 7.3.4 Simulation Study -- Problems -- References -- 8 Energy/Power Allocation and Management -- 8.1 Introduction -- 8.2 Power/Energy Management Controllers -- 8.3 Rule-Based Control Strategies -- 8.3.1 Deterministic Rule-Based Control Strategies -- 8.3.2 Fuzzy-Rule-Based Control Strategies -- 8.3.3 Rule-Based Control Strategies for PHEVs -- 8.4 Optimization-Based Control Strategies -- 8.4.1 Optimization Problem Formulation -- 8.4.2 Global Energy/Power Management Optimization -- 8.4.3 Real-Time Energy/Power Management Optimization -- 8.4.4 Optimization Techniques -- References -- 9 Control of Electric and Hybrid Electric Vehicle Dynamics -- 9.1 Introduction -- 9.2 Fundamentals of Vehicle Dynamic Control (VDC) Systems -- 9.2.1 Driver, Vehicle, and Environment -- 9.2.2 Working Principle of VDC systems -- 9.2.3 VDC Systems Classification -- 9.3 VDC Implementation on Electric and Hybrid Vehicles -- 9.3.1 Structure of the Control System -- 9.3.2 Control System Design -- 9.3.3 Simulation Study -- Problems -- References -- Index.

9781118403112


Electric vehicles.
Hybrid electric vehicles.


Electronic books.

TL220 .K54 2014

629.22/93

© 2024 Resource Centre. All rights reserved.