ORPP logo

Geographic Information Science for Land Resource Management.

Singh, Suraj Kumar.

Geographic Information Science for Land Resource Management. - 1st ed. - 1 online resource (448 pages)

Cover -- Half-Title Page -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgements -- 1 Climate Change in South Asia: Impact, Adaptation and the Role of GI Science -- 1.1 Introduction -- 1.2 Climate Change -- 1.3 Climate Change Trends in South Asia -- 1.4 Climate Change Impact in South Asia -- 1.4.1 Climate Change Impact on Socio-Economy in South Asia -- 1.4.2 Climate Change Impact on Agriculture in South Asia -- 1.4.3 Impact of Climate Change in Water Resources in South Asia -- 1.4.4 Impact of Climate Change on Sea Level -- 1.4.5 Impact of Climate Change on Human Health -- 1.5 Climate Change Adaptation in South Asia and the Role of GI Science -- 1.6 Conclusion -- References -- 2 Sustainable Land Resource Management Approach and Technological Interventions - Role of GI Science -- 2.1 Introduction -- 2.2 Land Resource Availability in India -- 2.3 Problems Associated with Land Resources -- 2.4 Important Interventions -- 2.5 Role of GI Science in Land Resource Management -- References -- 3 GI Science for Assessing the Urban Growth and Sustainability in Agra City, India -- 3.1 Introduction -- 3.2 Database -- 3.3 Methodology -- 3.4 Study Area -- 3.5 Result and Discussion -- 3.5.1 Land Use and Land Cover Change of Agra City, 2001-2020 -- 3.5.2 Growth in Registered Vehicles and Implications on the Sustainability -- 3.5.3 PM10 and Implications on the Sustainability -- 3.5.4 Municipal Solid Wastes and Implications on the Sustainability -- 3.5.5 Way Forward for Building Sustainable, Resilient, and Smart Agra City -- 3.6 Conclusion -- References -- 4 The Use of GI Science in Detecting Anthropogenic Interaction in Protected Areas: A Case of the Takamanda National Park, South West Region, Cameroon -- 4.1 Introduction -- 4.2 Context and Justification -- 4.3 Material and Data Sources -- 4.4 Results and Discussion. 4.4.1 Agricultural Activities -- 4.4.2 Hunting -- 4.4.3 Livestock Rearing -- 4.4.4 The Exploitation of Wood in the TNP -- 4.4.5 Fishing Activities -- 4.4.6 Harvesting Non-Timber Forest Products (NTFPS) -- 4.5 Conclusion -- References -- 5 Urban Heat Island Effect Concept and Its Assessment Using SatelliteBased Remote Sensing Data -- 5.1 Introduction -- 5.2 Classification of UHIs -- 5.2.1 Surface UHI -- 5.2.2 Atmospheric UHI -- 5.3 Chief Causes -- 5.3.1 Urbanisation -- 5.3.2 Urban Sprawl -- 5.3.3 Urban Geometry -- 5.3.4 Reduced Vegetation -- 5.3.5 Use of Engineered Materials -- 5.3.6 Changes in Energy Needs -- 5.3.7 Pavement Structure -- 5.4 Consequences of UHI Formation -- 5.5 Detection and Measurement Techniques -- 5.5.1 Thermal Remote Sensing -- 5.5.2 Small-Scale Models -- 5.5.3 Transect Studies -- 5.6 Mitigation Strategies -- 5.6.1 Enhancing Vegetative Cover -- 5.6.2 High Albedo Roofing Materials -- 5.6.3 High Albedo Pavements -- 5.6.4 Evaporative, Porous and Water Retaining Pavements -- 5.6.5 Urban Planning -- 5.6.6 Wind, Water and Atmospheric Conditions -- 5.7 Role of Remote Sensing and GIS in Assessing UHI Effect -- 5.8 Conclusion -- References -- 6 Remote Sensing for Snowpack Monitoring and Its Implications -- 6.1 Introduction -- 6.2 Snowpack Characterization -- 6.2.1 Spectral Response of Snow -- 6.2.2 Dry/Wet Snow Characterization -- 6.2.3 Physical Properties Of Snow -- 6.3 Remote Sensing of Alpine Snow -- 6.4 Techniques for the Qualitative and Quantitative Analysis of Snow -- 6.4.1 Qualitative Studies of the Snowpack -- 6.4.2 Quantitative Retrieval of Snow Properties -- 6.5 Implications and Potential Applications -- 6.6 Conclusion -- References -- 7 Spectral Ratioing: A Computational Model for Quick Information Retrieval of Earth's Surface Dynamics -- 7.1 Introduction. 7.2 Image Enhancement Techniques for Remotely Sensed Images and Their Categorization -- 7.2.1 Radiometric Enhancement -- 7.2.2 Spatial Enhancement -- 7.2.3 Spectral Enhancement -- 7.2.4 Additional Methods of Image Enhancement -- 7.3 Spectral Ratioing -- 7.3.1 The General Methodology for Implementing Spectral Ratios -- 7.4 Spectral Ratio for Urban Extraction and Mapping -- 7.4.1 Some Spectral Index for Urban Extraction -- 7.5 Spatiotemporal Change in Urban Pattern Through Spectral Ratio -- 7.6 Conclusion -- References -- 8 Delineation of Surface Water in Mining Dominated Region of Angul District of Odisha State, India Using Sentinel-2A Satellite Data -- 8.1 Introduction -- 8.2 Study Area -- 8.3 Materials and Method -- 8.3.1 Data -- 8.3.2 Methods -- 8.4 Results and Discussion -- 8.5 Conclusions -- Acknowledgements -- References -- 9 Mapping Seasonal Variability and Spatio-Temporal Trends of Water Quality Parameters in Wular Lake (Kashmir Valley) -- 9.1 Introduction -- 9.2 Study Area -- 9.3 Datasets and Methodology -- 9.3.1 Datasets -- 9.4 Methodology -- 9.4.1 Inverse Distance-Weighted Interpolation (IDW) -- 9.5 Mapping Spatial Variations in Water Quality Parameters (WQP'S) Using IDW Method in Wular Lake -- 9.5.1 Seasonal and Spatial Variability of WQPS in Wular Lake -- 9.6 Results and Discussion -- 9.6.1 Water Temperature (WT) -- 9.6.2 pH -- 9.6.3 Turbidity -- 9.6.4 Total Dissolved Solids (TDS) -- 9.6.5 Electrical Conductivity (EC) -- 9.6.6 Dissolved Oxygen (DO) -- 9.6.7 Calcium (Ca2+) -- 9.6.8 Magnesium (Mg2+) -- 9.6.9 Total Hardness (TH) -- 9.6.10 Total Alkalinity -- 9.6.11 Nitrates (NO3-) -- 9.6.12 Total Phosphate -- 9.7 Temporal Variations in Water Quality Parameters of Wular Lake (1992-2015) -- 9.8 Conclusion -- Acknowledgement -- References -- 10 Water Quality Zoning Using GIS &. Remote Sensing: A Case Study of Tehsil Matta District Swat Pakistan -- 10.1 Introduction -- 10.2 Martials and Methods -- 10.2.1 Study Area -- 10.2.2 Methodology -- 10.3 Results and Discussion -- 10.3.1 pH -- 10.3.2 Dissolved Oxygen -- 10.3.3 Electrical Conductivity -- 10.3.4 Salinity -- 10.3.5 Chemical Parameters -- 10.3.6 Alkalinity -- 10.3.7 Total Dissolved Solids -- 10.3.8 Chloride -- 10.3.9 Sulphate -- 10.3.10 Biological Oxygen Demand -- 10.3.11 Final Water Quality Zones Map -- 10.4 Conclusion -- References -- 11 Assessing the Impacts of Global Sea Level Rise (SLR) on the Mangrove Forests of Indian Sundarbans Using Geospatial Technology -- 11.1 Introduction -- 11.2 Materials and Methods -- 11.2.1 Data Methodology -- 11.2.2 Location and General Boundaries -- 11.3 Results and Discussions -- 11.3.1 Sundarban Sea Level Rise Scenario -- 11.3.2 Salinity Increase and Effect on Mangrove Forest -- 11.3.3 Mangrove Degradation of Sundarban -- 11.4 Conclusion and Restoration of the Delta -- 11.4.1 Mangrove Resilience Factors That Inform Site Selection of Sundarban -- 11.4.2 Various Factors That Would Allow for the Landward Migration -- 11.4.3 Various Issues That Highlighted Survival Over Time -- 11.4.4 Various Factors That Highlighted Strong Retrieval Potential -- 11.5 Acknowledgements -- References -- 12 Sustainable Water Resource Management Using Watershed Morphometry-A Case Study of Giri River Catchment, Himachal Pradesh, India -- 12.1 Introduction -- Objectives -- 12.2 Study Area -- 12.3 Datasets and Research Method -- 12.4 Results and Discussion -- 12.4.1 Morphometry of Linear Parameters -- 12.4.2 Morphometry of Relief Parameters -- 12.4.3 Morphometry of Aerial Parameters -- 12.5 Conclusion -- References -- 13 Improving the Procedure for River Flow Measurement and Mapping: Case Study River Plitvica, Croatia -- 13.1 Introduction -- 13.2 Study Area. 13.3 Data Sets and Methodology -- 13.3.1 Data Sets -- 13.4 Methodology -- 13.5 Results and Discussion -- 13.6 Conclusion -- Acknowledgement -- References -- 14 Spatiotemporal Analysis of Forest Degradation in South Chotanagpur Division of India -- 14.1 Introduction -- 14.2 Forest Cover Dynamics In Study Area -- 14.3 District-Wise Forest And Population Dynamics -- 14.4 NDVI Analysis -- 14.5 Driving Forces of Forest Cover Change -- 14.6 Conclusion -- References -- 15 Forest Fire Risk Assessment Using GIS Science - A Case Study of South India -- 15.1 Introduction -- 15.2 Study Area -- 15.3 Datasets Used -- 15.4 Factors Responsible for Forest Fire Over the Study Area -- 15.4.1 Vegetation Type and Tree Species -- 15.4.2 Climate -- 15.4.3 Topography -- 15.4.4 Road Networks -- 15.5 Methodology -- 15.6 Parameters Incorporated in the Study -- 15.7 Weighted Overlay Analysis in ArcGIS -- 15.7.1 Selecting an Evaluation Scale -- 15.7.2 Adding the Input Raster -- 15.7.3 Setting Scale Values -- 15.7.4 Assigning Weights to Input Raster -- 15.7.5 Finally Running the Weighted Overlay Tool in ArcGIS -- 15.8 NDVI -- 15.9 Results and Discussion -- References -- 16 GI Science for Land Use Suitability Analysis in the Himalayas - A Case Study of Himachal Pradesh, India -- 16.1 Introduction -- 16.2 Study Area -- 16.3 Materials and Methods -- 16.4 Results and Discussion -- 16.5 Conclusion -- Acknowledgment -- References -- 17 Using Remote Sensing Data and Geospatial Techniques for Watershed Delineation and Morphometric Analysis of Beas Upper Catchment, India -- 17.1 Introduction -- 17.2 Study Area -- 17.3 Methodology -- 17.4 Result and Discussion -- 17.4.1 Watershed Delineation and Boundary Comparison -- 17.4.2 Slope Comparison -- 17.4.3 Aspect Comparison -- 17.4.4 Morphometric Parameters -- 17.5 Conclusions -- Acknowledgement -- References. 18 Sub-Watershed Prioritization for Soil and Water Conservation - A Case Study of Lower Wardha River, Maharashtra, India, Using GI Science.

9781119786351


Sustainable development.
Geographic information systems-Environmental aspects.
Land use-Management-Geographic information systems.


Electronic books.

HD111 .G464 2021

333.73

© 2024 Resource Centre. All rights reserved.