5G Verticals : Customizing Applications, Technologies and Deployment Techniques.
Vannithamby, Rath.
5G Verticals : Customizing Applications, Technologies and Deployment Techniques. - 1st ed. - 1 online resource (322 pages) - IEEE Press Series . - IEEE Press Series .
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Acknowledgments -- Part I Introduction to 5G Verticals -- Chapter 1 Introduction -- 1.1 Introduction -- 1.2 5G and the Vertical Industries -- 1.3 5G Requirements in Support of Vertical Industries -- 1.4 Radio Access -- 1.5 Network Slicing -- 1.6 Other Network Issues -- 1.7 Book Outline -- References -- Part II 5G Verticals - Deployments and Business Model Opportunities and Challenges -- Chapter 2 5G Network for a Variety of Vertical Services -- 2.1 5G Services -- 2.1.1 Enhanced Mobile Broadband -- 2.1.2 Ultra Reliable and Low Latency Communications -- 2.1.3 Massive Machine Type Communications -- 2.2 Networks -- 2.2.1 5G Network Architecture -- 2.2.2 Multi-Access Edge Computing Network -- 2.2.3 Virtualized Radio Accesses -- 2.3 Service-Aware SON -- 2.3.1 5G-NR SON Control -- 2.3.2 An Intelligent Hybrid 3-Tier SON -- 2.3.3 Service-Aware Access Scheme -- 2.3.4 Performance Benefits -- 2.4 Summary -- Acronyms -- References -- Part III 5G Verticals - Radio Access Technologies -- Chapter 3 NR Radio Interface for 5G Verticals -- 3.1 Introduction -- 3.2 NR Radio Interface -- 3.2.1 eMBB -- 3.2.2 URLLC -- 3.2.3 mMTC -- 3.2.3.1 eMTC Overview -- 3.2.3.2 NB-IoT Overview -- 3.2.3.3 Coexistence with NR -- 3.3 5G Verticals -- 3.3.1 Industrial IoT -- 3.3.2 Automotive V2X -- 3.3.3 eHealth -- 3.4 Conclusion -- Acknowledgment -- Acronyms -- References -- Chapter 4 Effects of Dynamic Blockage in Multi-Connectivity Millimeter-Wave Radio Access -- 4.1 Introduction -- 4.2 Blockage Effects in 5G Millimeter-Wave Cellular Communication -- 4.2.1 Millimeter-Wave Link Blockage at a Glance -- 4.2.2 Blockage Modeling Methodology -- 4.2.2.1 Geometric Representation of Blocking Objects -- 4.2.2.2 Attenuation Caused by Blocking Objects -- 4.2.2.3 Channel Models -- 4.2.2.4 Blockage States. 4.2.3 Accounting for mmWave Blockage -- 4.2.4 Summary -- 4.3 Modeling Consumer 5G-IoT Systems with Dynamic Blockage -- 4.3.1 Spontaneous Public Event -- 4.3.2 Moving Through the Crowd -- 4.3.3 AR Sessions in Dense Moving Crowd -- 4.3.4 Connected Vehicles -- 4.3.5 Summary -- 4.4 Dynamic Multi-Connectivity -- 4.4.1 Multi-Connectivity at a Glance -- 4.4.2 Optimizing the Degree of Multi-Connectivity -- 4.4.3 Modeling 5G NR Systems with Multi-Connectivity -- 4.4.4 Impact of Multi-Connectivity Policy -- 4.4.5 Summary -- 4.5 Bandwidth Reservation -- 4.5.1 Session Continuity Mechanisms -- 4.5.2 Concept of Bandwidth Reservation -- 4.5.3 Summary -- 4.6 Proactive Handover Mechanisms -- 4.6.1 Dynamic Blockage Avoidance -- 4.6.2 Deterministic AP Locations -- 4.6.3 Deterministic UE Locations/Trajectories -- 4.6.4 Summary -- 4.7 Conclusions -- References -- Chapter 5 Radio Resource Management Techniques for 5G Verticals -- 5.1 Introduction -- 5.2 5G Goals -- 5.3 Radio Access Network Management -- 5.4 Network Slicing -- 5.5 Use Case: Virtual Reality -- 5.5.1 System Model -- 5.5.2 Problem Formulation -- 5.5.3 ADMM-Based Solution -- 5.5.4 Performance Analysis -- 5.6 Summary -- References -- Further Reading -- Part IV 5G Verticals - Network Infrastructure Technologies -- Chapter 6 5G Verticals - Network Infrastructure Technologies -- 6.1 Introduction -- 6.2 URLLC Verticals -- 6.2.1 URLLC for Motion Control of Industry 4.0 -- 6.2.2 Multi-Media Productions Industry -- 6.2.3 Remote Control and Maintenance for URLLC -- 6.2.4 Vehicle-to-Everything -- 6.3 Network Deployment Options for Verticals -- 6.4 SDN, NFV and 5G Core for URLLC -- 6.4.1 SDN for URLLC -- 6.4.2 NFV for URLLC -- 6.4.2.1 NFV Background -- 6.4.2.2 Reducing Virtualization Overhead on a Single Physical Server -- 6.4.2.3 Evolution of NFV toward Cloud Native Network Functions. 6.4.3 5G Core and Support for URLLC -- 6.5 Application and Network Interfacing Via Network Slicing -- 6.6 Summary -- References -- Chapter 7 Edge Cloud: An Essential Component of 5G Networks -- 7.1 -- 7.2 Part I: 5G and the Edge Cloud -- 7.3 Part II: Software Defined Networking and Network Function Virtualization -- 7.3.1 Rise of SDN -- 7.3.2 SDN in Data Centers and Networks -- 7.3.3 Network Function Virtualization -- 7.4 Evolving Wireless Core, e.g. OMEC, Towards Cloud Native and 5G Service-Based Architecture -- 7.4.1 High Volume Servers' Software and Hardware Optimization for Packet Processing -- 7.4.1.1 Data Plane Development Kit [27] -- 7.4.1.2 Flow Classification Bottleneck -- 7.4.1.3 Cuckoo Hashing for Efficient Table Utilization -- 7.4.1.4 Intel Resource Director Technology [39] -- 7.5 Part III: Software-Defined Disaggregated RAN -- 7.5.1 RAN Disaggregation -- 7.5.2 Software-Defined RAN Control -- 7.6 Part IV: White-Box Solutions for Compute, Storage, Access, and Networking -- 7.7 Part V: Edge Cloud Deployment Options -- 7.8 Part VI: Edge Cloud and Network Slicing -- 7.9 Summary -- Acknowledgments -- References -- Part V 5G Verticals - Key Vertical Applications -- Chapter 8 Connected Aerials -- 8.1 Introduction -- 8.2 General Requirements and Challenges for Supporting UAVs over a Cellular Network -- 8.3 Summary on Current Drone Regulations -- 8.4 Review of Aerial Communication R& -- D Activities in General -- 8.4.1 R& -- D Activities from Industry and Government Agencies -- 8.4.2 Academic Activities -- 8.4.3 3GPP Activities in General -- 8.5 3GPP Enhancement on Supporting Drones -- 8.5.1 3GPP Drone Study Item and Work Item in RAN1 -- 8.5.2 3GPP Drone Study Item and Work Item in RAN2 -- 8.6 5G Challenges, Solutions, and Further Studies -- 8.6.1 Challenges, New Emerging Usages, and Requirements for 5G. 8.6.2 3GPP Features Addressing These New Requirements -- 8.6.2.1 eMBB -- 8.6.2.2 URLLC -- 8.6.2.3 Massive Machine-Type Communications -- 8.6.2.4 V2X -- 8.6.2.5 Next Gen Core Network -- 8.6.2.6 Positioning -- 8.6.3 Further Study Needed for Aerial Vehicles in 5G -- Acronyms -- References -- Chapter 9 Connected Automobiles -- 9.1 Introduction -- 9.2 Levels of Vehicle Automation -- 9.3 Multi-Access Edge Computing in 5G -- 9.4 Platoon-Based Driving Use Case -- 9.4.1 Platoon Model -- 9.4.2 Edge Computing for Platooning -- 9.5 High Definition Maps Use Case -- 9.5.1 HD Maps Procedures -- 9.5.1.1 Map Download Procedure -- 9.5.1.2 Map Update Procedure -- 9.5.2 Edge Computing for HD Maps -- 9.6 Summary -- Acknowledgment -- References -- Chapter 10 Connected Factory -- 10.1 Introduction -- 10.2 5G Technologies for the Manufacturing Industry -- 10.2.1 Ultra-Reliable and Low-Latency Communications -- 10.2.2 Enhanced Mobile Broadband -- 10.2.3 Massive Machine Type Communication -- 10.3 5G Alliance for Connected Industries and Automation -- 10.4 Use Cases -- 10.4.1 Motion Control -- 10.4.2 Control to Control Communication -- 10.4.3 Mobile Control Panels with Safety Functions -- 10.4.4 Mobile Robots -- 10.4.5 Massive Wireless Sensor Networks -- 10.4.6 Remote Access and Maintenance -- 10.4.7 Augmented Reality -- 10.4.8 Process Automation - Closed Loop Control -- 10.4.9 Process Automation - Process Monitoring -- 10.4.10 Process Automation - Plant Asset Management -- 10.4.11 Inbound Logistics -- 10.4.12 Wide Area Connectivity for Fleet Maintenance -- 10.4.13 High-End Camera -- 10.5 3GPP Support -- 10.5.1 5G Use Case and Requirements for Smart Factory -- 10.5.2 5G Standardized Solution Development for Smart Factory -- 10.5.2.1 5G System Architecture for Smart Factory (SA2) -- 10.5.2.2 Other 3GPP Work for Smart Factory -- 10.6 Early Deployments -- 10.6.1 Spectrum. 10.6.2 Early Trials -- 10.7 Conclusions -- Acronyms -- References -- Index -- EULA.
9781119514855
5G mobile communication systems.
Electronic books.
TK5103.25 .A12 2020
621.384559
5G Verticals : Customizing Applications, Technologies and Deployment Techniques. - 1st ed. - 1 online resource (322 pages) - IEEE Press Series . - IEEE Press Series .
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Acknowledgments -- Part I Introduction to 5G Verticals -- Chapter 1 Introduction -- 1.1 Introduction -- 1.2 5G and the Vertical Industries -- 1.3 5G Requirements in Support of Vertical Industries -- 1.4 Radio Access -- 1.5 Network Slicing -- 1.6 Other Network Issues -- 1.7 Book Outline -- References -- Part II 5G Verticals - Deployments and Business Model Opportunities and Challenges -- Chapter 2 5G Network for a Variety of Vertical Services -- 2.1 5G Services -- 2.1.1 Enhanced Mobile Broadband -- 2.1.2 Ultra Reliable and Low Latency Communications -- 2.1.3 Massive Machine Type Communications -- 2.2 Networks -- 2.2.1 5G Network Architecture -- 2.2.2 Multi-Access Edge Computing Network -- 2.2.3 Virtualized Radio Accesses -- 2.3 Service-Aware SON -- 2.3.1 5G-NR SON Control -- 2.3.2 An Intelligent Hybrid 3-Tier SON -- 2.3.3 Service-Aware Access Scheme -- 2.3.4 Performance Benefits -- 2.4 Summary -- Acronyms -- References -- Part III 5G Verticals - Radio Access Technologies -- Chapter 3 NR Radio Interface for 5G Verticals -- 3.1 Introduction -- 3.2 NR Radio Interface -- 3.2.1 eMBB -- 3.2.2 URLLC -- 3.2.3 mMTC -- 3.2.3.1 eMTC Overview -- 3.2.3.2 NB-IoT Overview -- 3.2.3.3 Coexistence with NR -- 3.3 5G Verticals -- 3.3.1 Industrial IoT -- 3.3.2 Automotive V2X -- 3.3.3 eHealth -- 3.4 Conclusion -- Acknowledgment -- Acronyms -- References -- Chapter 4 Effects of Dynamic Blockage in Multi-Connectivity Millimeter-Wave Radio Access -- 4.1 Introduction -- 4.2 Blockage Effects in 5G Millimeter-Wave Cellular Communication -- 4.2.1 Millimeter-Wave Link Blockage at a Glance -- 4.2.2 Blockage Modeling Methodology -- 4.2.2.1 Geometric Representation of Blocking Objects -- 4.2.2.2 Attenuation Caused by Blocking Objects -- 4.2.2.3 Channel Models -- 4.2.2.4 Blockage States. 4.2.3 Accounting for mmWave Blockage -- 4.2.4 Summary -- 4.3 Modeling Consumer 5G-IoT Systems with Dynamic Blockage -- 4.3.1 Spontaneous Public Event -- 4.3.2 Moving Through the Crowd -- 4.3.3 AR Sessions in Dense Moving Crowd -- 4.3.4 Connected Vehicles -- 4.3.5 Summary -- 4.4 Dynamic Multi-Connectivity -- 4.4.1 Multi-Connectivity at a Glance -- 4.4.2 Optimizing the Degree of Multi-Connectivity -- 4.4.3 Modeling 5G NR Systems with Multi-Connectivity -- 4.4.4 Impact of Multi-Connectivity Policy -- 4.4.5 Summary -- 4.5 Bandwidth Reservation -- 4.5.1 Session Continuity Mechanisms -- 4.5.2 Concept of Bandwidth Reservation -- 4.5.3 Summary -- 4.6 Proactive Handover Mechanisms -- 4.6.1 Dynamic Blockage Avoidance -- 4.6.2 Deterministic AP Locations -- 4.6.3 Deterministic UE Locations/Trajectories -- 4.6.4 Summary -- 4.7 Conclusions -- References -- Chapter 5 Radio Resource Management Techniques for 5G Verticals -- 5.1 Introduction -- 5.2 5G Goals -- 5.3 Radio Access Network Management -- 5.4 Network Slicing -- 5.5 Use Case: Virtual Reality -- 5.5.1 System Model -- 5.5.2 Problem Formulation -- 5.5.3 ADMM-Based Solution -- 5.5.4 Performance Analysis -- 5.6 Summary -- References -- Further Reading -- Part IV 5G Verticals - Network Infrastructure Technologies -- Chapter 6 5G Verticals - Network Infrastructure Technologies -- 6.1 Introduction -- 6.2 URLLC Verticals -- 6.2.1 URLLC for Motion Control of Industry 4.0 -- 6.2.2 Multi-Media Productions Industry -- 6.2.3 Remote Control and Maintenance for URLLC -- 6.2.4 Vehicle-to-Everything -- 6.3 Network Deployment Options for Verticals -- 6.4 SDN, NFV and 5G Core for URLLC -- 6.4.1 SDN for URLLC -- 6.4.2 NFV for URLLC -- 6.4.2.1 NFV Background -- 6.4.2.2 Reducing Virtualization Overhead on a Single Physical Server -- 6.4.2.3 Evolution of NFV toward Cloud Native Network Functions. 6.4.3 5G Core and Support for URLLC -- 6.5 Application and Network Interfacing Via Network Slicing -- 6.6 Summary -- References -- Chapter 7 Edge Cloud: An Essential Component of 5G Networks -- 7.1 -- 7.2 Part I: 5G and the Edge Cloud -- 7.3 Part II: Software Defined Networking and Network Function Virtualization -- 7.3.1 Rise of SDN -- 7.3.2 SDN in Data Centers and Networks -- 7.3.3 Network Function Virtualization -- 7.4 Evolving Wireless Core, e.g. OMEC, Towards Cloud Native and 5G Service-Based Architecture -- 7.4.1 High Volume Servers' Software and Hardware Optimization for Packet Processing -- 7.4.1.1 Data Plane Development Kit [27] -- 7.4.1.2 Flow Classification Bottleneck -- 7.4.1.3 Cuckoo Hashing for Efficient Table Utilization -- 7.4.1.4 Intel Resource Director Technology [39] -- 7.5 Part III: Software-Defined Disaggregated RAN -- 7.5.1 RAN Disaggregation -- 7.5.2 Software-Defined RAN Control -- 7.6 Part IV: White-Box Solutions for Compute, Storage, Access, and Networking -- 7.7 Part V: Edge Cloud Deployment Options -- 7.8 Part VI: Edge Cloud and Network Slicing -- 7.9 Summary -- Acknowledgments -- References -- Part V 5G Verticals - Key Vertical Applications -- Chapter 8 Connected Aerials -- 8.1 Introduction -- 8.2 General Requirements and Challenges for Supporting UAVs over a Cellular Network -- 8.3 Summary on Current Drone Regulations -- 8.4 Review of Aerial Communication R& -- D Activities in General -- 8.4.1 R& -- D Activities from Industry and Government Agencies -- 8.4.2 Academic Activities -- 8.4.3 3GPP Activities in General -- 8.5 3GPP Enhancement on Supporting Drones -- 8.5.1 3GPP Drone Study Item and Work Item in RAN1 -- 8.5.2 3GPP Drone Study Item and Work Item in RAN2 -- 8.6 5G Challenges, Solutions, and Further Studies -- 8.6.1 Challenges, New Emerging Usages, and Requirements for 5G. 8.6.2 3GPP Features Addressing These New Requirements -- 8.6.2.1 eMBB -- 8.6.2.2 URLLC -- 8.6.2.3 Massive Machine-Type Communications -- 8.6.2.4 V2X -- 8.6.2.5 Next Gen Core Network -- 8.6.2.6 Positioning -- 8.6.3 Further Study Needed for Aerial Vehicles in 5G -- Acronyms -- References -- Chapter 9 Connected Automobiles -- 9.1 Introduction -- 9.2 Levels of Vehicle Automation -- 9.3 Multi-Access Edge Computing in 5G -- 9.4 Platoon-Based Driving Use Case -- 9.4.1 Platoon Model -- 9.4.2 Edge Computing for Platooning -- 9.5 High Definition Maps Use Case -- 9.5.1 HD Maps Procedures -- 9.5.1.1 Map Download Procedure -- 9.5.1.2 Map Update Procedure -- 9.5.2 Edge Computing for HD Maps -- 9.6 Summary -- Acknowledgment -- References -- Chapter 10 Connected Factory -- 10.1 Introduction -- 10.2 5G Technologies for the Manufacturing Industry -- 10.2.1 Ultra-Reliable and Low-Latency Communications -- 10.2.2 Enhanced Mobile Broadband -- 10.2.3 Massive Machine Type Communication -- 10.3 5G Alliance for Connected Industries and Automation -- 10.4 Use Cases -- 10.4.1 Motion Control -- 10.4.2 Control to Control Communication -- 10.4.3 Mobile Control Panels with Safety Functions -- 10.4.4 Mobile Robots -- 10.4.5 Massive Wireless Sensor Networks -- 10.4.6 Remote Access and Maintenance -- 10.4.7 Augmented Reality -- 10.4.8 Process Automation - Closed Loop Control -- 10.4.9 Process Automation - Process Monitoring -- 10.4.10 Process Automation - Plant Asset Management -- 10.4.11 Inbound Logistics -- 10.4.12 Wide Area Connectivity for Fleet Maintenance -- 10.4.13 High-End Camera -- 10.5 3GPP Support -- 10.5.1 5G Use Case and Requirements for Smart Factory -- 10.5.2 5G Standardized Solution Development for Smart Factory -- 10.5.2.1 5G System Architecture for Smart Factory (SA2) -- 10.5.2.2 Other 3GPP Work for Smart Factory -- 10.6 Early Deployments -- 10.6.1 Spectrum. 10.6.2 Early Trials -- 10.7 Conclusions -- Acronyms -- References -- Index -- EULA.
9781119514855
5G mobile communication systems.
Electronic books.
TK5103.25 .A12 2020
621.384559