Future Propulsion Systems and Energy Sources in Sustainable Aviation.
Farokhi, Saeed.
Future Propulsion Systems and Energy Sources in Sustainable Aviation. - 1st ed. - 1 online resource (447 pages) - Aerospace Series . - Aerospace Series .
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Abbreviations and Acronyms -- About the Companion Website -- Chapter 1 Aircraft Engines - A Review -- 1.1 Introduction -- 1.2 Aerothermodynamics of Working Fluid -- 1.2.1 Isentropic Process and Isentropic Flow -- 1.2.2 Conservation of Mass -- 1.2.3 Conservation of Linear Momentum -- 1.2.4 Conservation of Angular Momentum -- 1.2.5 Conservation of Energy -- 1.2.6 Speed of Sound and Mach Number -- 1.2.7 Stagnation State -- 1.3 Thrust and Specific Fuel Consumption -- 1.3.1 Takeoff Thrust -- 1.3.2 Installed Thrust - Some Bookkeeping Issues on Thrust and Drag -- 1.3.3 Air-Breathing Engine Performance Parameters -- 1.3.3.1 Specific Thrust -- 1.3.3.2 Specific Fuel Consumption and Specific Impulse -- 1.4 Thermal and Propulsive Efficiency -- 1.4.1 Thermal Efficiency -- 1.4.2 Propulsive Efficiency -- 1.4.3 Engine Overall Efficiency and Its Impact on Aircraft Range and Endurance -- 1.5 Gas Generator -- 1.6 Engine Components -- 1.6.1 The Inlet -- 1.6.2 The Nozzle -- 1.6.3 The Compressor -- 1.6.4 The Combustor -- 1.6.5 The Turbine -- 1.7 Performance Evaluation of a Turbojet Engine -- 1.8 Turbojet Engine with an Afterburner -- 1.8.1 Introduction -- 1.8.2 Analysis -- 1.9 Turbofan Engine -- 1.9.1 Introduction -- 1.9.2 Analysis of a Separate‐Exhaust Turbofan Engine -- 1.9.3 Thermal Efficiency of a Turbofan Engine -- 1.9.4 Propulsive Efficiency of a Turbofan Engine -- 1.9.5 Ultra-High Bypass (UHB) Geared Turbofan Engines -- 1.9.6 Analysis of Mixed-Exhaust Turbofan Engines with Afterburners -- 1.9.6.1 Mixer -- 1.9.6.2 Mixed-Turbofan Cycle Analysis -- 1.9.6.3 Solution Procedure -- 1.10 Turboprop Engine -- 1.10.1 Introduction -- 1.10.2 Turboprop Cycle Analysis -- 1.10.2.1 The New Parameters -- 1.10.2.2 Design-Point Analysis. 1.10.2.3 Optimum Power Split between the Propeller and the Jet -- 1.10.2.4 Advanced Propeller: Prop-Fan -- 1.11 High-Speed Air-Breathing Engines -- 1.11.1 Supersonic Combustion Ramjet -- 1.11.1.1 Inlet Analysis -- 1.11.1.2 Scramjet Combustor -- 1.11.1.3 Scramjet Nozzle -- 1.12 Rocket-Based Airbreathing Propulsion -- 1.13 Summary -- References -- Chapter 2 Aircraft Aerodynamics - A Review -- 2.1 Introduction -- 2.2 Similarity Parameters in Compressible Flow: Flight vs. Wind Tunnel -- 2.3 Physical Boundary Conditions on a Solid Wall (in Continuum Mechanics) -- 2.4 Profile and Parasite Drag -- 2.4.1 Boundary Layers -- 2.4.1.1 Case 1: Incompressible Laminar Flow -- 2.4.1.2 Case 2: Laminar Compressible Boundary Layers -- 2.4.1.3 Case 3: Turbulent Boundary Layers -- 2.4.1.4 Case 4: Transition -- 2.4.2 Profile Drag of an Airfoil -- 2.5 Drag Due to Lift -- 2.5.1 Classical Theory -- 2.5.2 Optimal Spanloading: The Case of Bell Spanload -- 2.6 Waves in Supersonic Flow -- 2.6.1 Speed of Sound -- 2.6.2 Normal Shock Wave -- 2.6.3 Oblique Shock Waves -- 2.6.4 Expansion Waves -- 2.7 Compressibility Effects and Critical Mach Number -- 2.8 Drag Divergence Phenomenon and Supercritical Airfoil -- 2.9 Wing Sweep -- 2.10 Delta Wing Aerodynamics -- 2.10.1 Vortex Breakdown -- 2.11 Area-Rule in Transonic Aircraft -- 2.12 Optimum Shape for Slender Body of Revolution of Length in Supersonic Flow -- 2.12.1 Sears-Haack Body -- 2.12.2 Von Karman Ogive of Length and Base Area, S, for Minimum Axisymmetric Nose Wave Drag -- 2.13 High-Lift Devices: Multi-Element Airfoils -- 2.14 Powered Lift and STOL Aircraft -- 2.15 Laminar Flow Control, LFC -- 2.16 Aerodynamic Figures of Merit -- 2.17 Advanced Aircraft Designs and Technologies for Leaner, Greener Aviation -- 2.18 Summary -- References -- Chapter 3 Understanding Aviation's Impact on the Environment -- 3.1 Introduction. 3.2 Combustion Emissions -- 3.2.1 Greenhouse Gases -- 3.2.2 Carbon Monoxide, CO, and Unburned Hydrocarbons, UHC -- 3.2.3 Oxides of Nitrogen, NOx -- 3.2.4 Impact of NO on Ozone in Lower and Upper Atmosphere -- 3.2.4.1 Lower Atmosphere -- 3.2.4.2 Upper Atmosphere -- 3.2.5 Impact of NOx Emissions on Surface Air Quality -- 3.2.6 Soot/Smoke and Particulate Matter (PM) -- 3.2.7 Contrails, Cirrus Clouds, and Impact on Climate -- 3.3 Engine Emission Standards -- 3.4 Low-Emission Combustors -- 3.5 Aviation Fuels -- 3.6 Interim Summary on Combustion Emission Impact on the Environment -- 3.7 Aviation Impact on Carbon Dioxide Emission: Quantified -- 3.8 Noise -- 3.8.1 Introduction -- 3.8.1.1 General Discussion -- 3.8.1.2 Sound Intensity -- 3.8.1.3 Acoustic Power -- 3.8.1.4 Levels and Decibels -- 3.8.1.5 Sound Power Level in Decibels, dB -- 3.8.1.6 Sound Intensity Level in Decibels, dB -- 3.8.1.7 Sound Pressure Level in Decibels, dB -- 3.8.1.8 Multiple Sources -- 3.8.1.9 Overall Sound Pressure Level in Decibels, dB -- 3.8.1.10 Octave Band, One-Third Octave Band, and Tunable Filters -- 3.8.1.11 Adding and Subtracting Noise Sources -- 3.8.1.12 Weighting -- 3.8.1.13 Effective Perceived Noise Level (EPNL), dB, and Other Metrics -- 3.8.1.14 Pulsating Sphere: Model of a Monopole -- 3.8.1.15 Two Monopoles: Model of a Dipole -- 3.8.1.16 Two Dipoles: Model of Quadrupole -- 3.8.2 Sources of Noise Near Airports -- 3.8.3 Engine Noise -- 3.8.4 Subsonic Jet Noise -- 3.8.5 Supersonic Jet Noise -- 3.9 Engine Noise Directivity Pattern -- 3.10 Noise Reduction at the Source -- 3.10.1 Wing Shielding -- 3.10.2 Fan Noise Reduction -- 3.10.3 Subsonic Jet Noise Mitigation -- 3.10.3.1 Chevron Nozz -- 3.10.3.2 Acoustic Liner in Exhaust Core -- 3.10.4 Supersonic Jet Noise Reduction -- 3.11 Sonic Boom -- 3.12 Aircraft Noise Certification. 3.13 NASA's Vision: Quiet Green Transport Technology -- 3.14 FAA's Vision: NextGen Technology -- 3.15 The European Vision for Sustainable Aviation -- 3.16 Summary -- References -- Chapter 4 Future Fuels and Energy Sources in Sustainable Aviation -- 4.1 Introduction -- 4.2 Alternative Jet Fuels (AJFs) -- 4.2.1 Choice of Feedstock -- 4.2.2 Conversion Pathways to Jet Fuel -- 4.2.3 AJF Evaluation and Certification/Qualification -- 4.2.4 Impact of Biofuel on Emissions -- 4.2.5 Advanced Biofuel Production -- 4.2.6 Lifecycle Assessment of Bio‐Based Aviation Fuel -- 4.2.7 Conversion of Bio-Crops to Electricity -- 4.3 Liquefied Natural Gas, LNG -- 4.3.1 Composition of Natural Gas and LNG -- 4.4 Hydrogen -- 4.4.1 Hydrogen Production -- 4.4.2 Hydrogen Delivery and Storage -- 4.4.3 Gravimetric and Volumetric Energy Density and Liquid Fuel Cost -- 4.5 Battery Systems -- 4.5.1 Battery Energy Density -- 4.5.2 Open-Cycle Battery Systems -- 4.5.3 Charging Batteries in Flight: Two Examples -- 4.5.4 All-Electric Aircraft: Voltair Concept Platform -- 4.6 Fuel Cell -- 4.7 Fuels for the Compact Fusion Reactor (CFR) -- 4.8 Summary -- References -- Chapter 5 Promising Technologies in Propulsion and Power -- 5.1 Introduction -- 5.2 Gas Turbine Engine -- 5.2.1 Brayton Cycle: Simple Gas Turbine Engine -- 5.2.2 Turbofan Engine -- 5.3 Distributed Combustion Concepts in Advanced Gas Turbine Engine Core -- 5.4 Multifuel (Cryogenic-Kerosene), Hybrid Propulsion Concept -- 5.5 Intercooled and Recuperated Turbofan Engines -- 5.6 Active Core Concepts -- 5.7 Topping Cycle: Wave Rotor Combustion -- 5.8 Pulse Detonation Engine (PDE) -- 5.9 Humphrey Cycle vs. Brayton: Thermodynamics -- 5.9.1 Idealized Laboratory PDE: Thrust Tube -- 5.9.2 Pulse Detonation Ramjets -- 5.9.3 Turbofan Engine with PDE -- 5.9.4 Pulse Detonation Rocket Engine (PDRE). 5.9.5 Vehicle-Level Performance Evaluation of PDE -- 5.10 Boundary-Layer Ingestion (BLI) and Distributed Propulsion (DP) Concept -- 5.10.1 Aircraft Drag Reduction Through BLI -- 5.10.2 Aircraft Noise Reduction: Advanced Concepts -- 5.10.3 Multidisciplinary Design Optimization (MDO) of a BWB Aircraft with BLI -- 5.11 Distributed Propulsion Concept in Early Aviation -- 5.12 Distributed Propulsion in Modern Aviation -- 5.12.1 Optimal Number of Propulsors in Distributed Propulsion -- 5.12.2 Optimal Propulsor Types in Distributed Propulsion -- 5.13 Interim Summary on Electric Propulsion (EP) -- 5.14 Synergetic Air-Breathing Rocket Engine -- SABRE -- 5.15 Compact Fusion Reactor: The Path to Clean, Unlimited Energy -- 5.16 Aircraft Configurations Using Advanced Propulsion Systems -- 5.17 Summary -- References -- Chapter 6 Pathways to Sustainable Aviation -- 6.1 Introduction -- 6.2 Pathways to Certification -- 6.3 Energy Pathways in Sustainable Aviation -- 6.4 Future of GT Engines -- 6.5 Summary -- References -- Index -- EULA.
9781119414988
Airplanes-Motors.
Electronic books.
TL701 .F376 2020
629.134/35
Future Propulsion Systems and Energy Sources in Sustainable Aviation. - 1st ed. - 1 online resource (447 pages) - Aerospace Series . - Aerospace Series .
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Abbreviations and Acronyms -- About the Companion Website -- Chapter 1 Aircraft Engines - A Review -- 1.1 Introduction -- 1.2 Aerothermodynamics of Working Fluid -- 1.2.1 Isentropic Process and Isentropic Flow -- 1.2.2 Conservation of Mass -- 1.2.3 Conservation of Linear Momentum -- 1.2.4 Conservation of Angular Momentum -- 1.2.5 Conservation of Energy -- 1.2.6 Speed of Sound and Mach Number -- 1.2.7 Stagnation State -- 1.3 Thrust and Specific Fuel Consumption -- 1.3.1 Takeoff Thrust -- 1.3.2 Installed Thrust - Some Bookkeeping Issues on Thrust and Drag -- 1.3.3 Air-Breathing Engine Performance Parameters -- 1.3.3.1 Specific Thrust -- 1.3.3.2 Specific Fuel Consumption and Specific Impulse -- 1.4 Thermal and Propulsive Efficiency -- 1.4.1 Thermal Efficiency -- 1.4.2 Propulsive Efficiency -- 1.4.3 Engine Overall Efficiency and Its Impact on Aircraft Range and Endurance -- 1.5 Gas Generator -- 1.6 Engine Components -- 1.6.1 The Inlet -- 1.6.2 The Nozzle -- 1.6.3 The Compressor -- 1.6.4 The Combustor -- 1.6.5 The Turbine -- 1.7 Performance Evaluation of a Turbojet Engine -- 1.8 Turbojet Engine with an Afterburner -- 1.8.1 Introduction -- 1.8.2 Analysis -- 1.9 Turbofan Engine -- 1.9.1 Introduction -- 1.9.2 Analysis of a Separate‐Exhaust Turbofan Engine -- 1.9.3 Thermal Efficiency of a Turbofan Engine -- 1.9.4 Propulsive Efficiency of a Turbofan Engine -- 1.9.5 Ultra-High Bypass (UHB) Geared Turbofan Engines -- 1.9.6 Analysis of Mixed-Exhaust Turbofan Engines with Afterburners -- 1.9.6.1 Mixer -- 1.9.6.2 Mixed-Turbofan Cycle Analysis -- 1.9.6.3 Solution Procedure -- 1.10 Turboprop Engine -- 1.10.1 Introduction -- 1.10.2 Turboprop Cycle Analysis -- 1.10.2.1 The New Parameters -- 1.10.2.2 Design-Point Analysis. 1.10.2.3 Optimum Power Split between the Propeller and the Jet -- 1.10.2.4 Advanced Propeller: Prop-Fan -- 1.11 High-Speed Air-Breathing Engines -- 1.11.1 Supersonic Combustion Ramjet -- 1.11.1.1 Inlet Analysis -- 1.11.1.2 Scramjet Combustor -- 1.11.1.3 Scramjet Nozzle -- 1.12 Rocket-Based Airbreathing Propulsion -- 1.13 Summary -- References -- Chapter 2 Aircraft Aerodynamics - A Review -- 2.1 Introduction -- 2.2 Similarity Parameters in Compressible Flow: Flight vs. Wind Tunnel -- 2.3 Physical Boundary Conditions on a Solid Wall (in Continuum Mechanics) -- 2.4 Profile and Parasite Drag -- 2.4.1 Boundary Layers -- 2.4.1.1 Case 1: Incompressible Laminar Flow -- 2.4.1.2 Case 2: Laminar Compressible Boundary Layers -- 2.4.1.3 Case 3: Turbulent Boundary Layers -- 2.4.1.4 Case 4: Transition -- 2.4.2 Profile Drag of an Airfoil -- 2.5 Drag Due to Lift -- 2.5.1 Classical Theory -- 2.5.2 Optimal Spanloading: The Case of Bell Spanload -- 2.6 Waves in Supersonic Flow -- 2.6.1 Speed of Sound -- 2.6.2 Normal Shock Wave -- 2.6.3 Oblique Shock Waves -- 2.6.4 Expansion Waves -- 2.7 Compressibility Effects and Critical Mach Number -- 2.8 Drag Divergence Phenomenon and Supercritical Airfoil -- 2.9 Wing Sweep -- 2.10 Delta Wing Aerodynamics -- 2.10.1 Vortex Breakdown -- 2.11 Area-Rule in Transonic Aircraft -- 2.12 Optimum Shape for Slender Body of Revolution of Length in Supersonic Flow -- 2.12.1 Sears-Haack Body -- 2.12.2 Von Karman Ogive of Length and Base Area, S, for Minimum Axisymmetric Nose Wave Drag -- 2.13 High-Lift Devices: Multi-Element Airfoils -- 2.14 Powered Lift and STOL Aircraft -- 2.15 Laminar Flow Control, LFC -- 2.16 Aerodynamic Figures of Merit -- 2.17 Advanced Aircraft Designs and Technologies for Leaner, Greener Aviation -- 2.18 Summary -- References -- Chapter 3 Understanding Aviation's Impact on the Environment -- 3.1 Introduction. 3.2 Combustion Emissions -- 3.2.1 Greenhouse Gases -- 3.2.2 Carbon Monoxide, CO, and Unburned Hydrocarbons, UHC -- 3.2.3 Oxides of Nitrogen, NOx -- 3.2.4 Impact of NO on Ozone in Lower and Upper Atmosphere -- 3.2.4.1 Lower Atmosphere -- 3.2.4.2 Upper Atmosphere -- 3.2.5 Impact of NOx Emissions on Surface Air Quality -- 3.2.6 Soot/Smoke and Particulate Matter (PM) -- 3.2.7 Contrails, Cirrus Clouds, and Impact on Climate -- 3.3 Engine Emission Standards -- 3.4 Low-Emission Combustors -- 3.5 Aviation Fuels -- 3.6 Interim Summary on Combustion Emission Impact on the Environment -- 3.7 Aviation Impact on Carbon Dioxide Emission: Quantified -- 3.8 Noise -- 3.8.1 Introduction -- 3.8.1.1 General Discussion -- 3.8.1.2 Sound Intensity -- 3.8.1.3 Acoustic Power -- 3.8.1.4 Levels and Decibels -- 3.8.1.5 Sound Power Level in Decibels, dB -- 3.8.1.6 Sound Intensity Level in Decibels, dB -- 3.8.1.7 Sound Pressure Level in Decibels, dB -- 3.8.1.8 Multiple Sources -- 3.8.1.9 Overall Sound Pressure Level in Decibels, dB -- 3.8.1.10 Octave Band, One-Third Octave Band, and Tunable Filters -- 3.8.1.11 Adding and Subtracting Noise Sources -- 3.8.1.12 Weighting -- 3.8.1.13 Effective Perceived Noise Level (EPNL), dB, and Other Metrics -- 3.8.1.14 Pulsating Sphere: Model of a Monopole -- 3.8.1.15 Two Monopoles: Model of a Dipole -- 3.8.1.16 Two Dipoles: Model of Quadrupole -- 3.8.2 Sources of Noise Near Airports -- 3.8.3 Engine Noise -- 3.8.4 Subsonic Jet Noise -- 3.8.5 Supersonic Jet Noise -- 3.9 Engine Noise Directivity Pattern -- 3.10 Noise Reduction at the Source -- 3.10.1 Wing Shielding -- 3.10.2 Fan Noise Reduction -- 3.10.3 Subsonic Jet Noise Mitigation -- 3.10.3.1 Chevron Nozz -- 3.10.3.2 Acoustic Liner in Exhaust Core -- 3.10.4 Supersonic Jet Noise Reduction -- 3.11 Sonic Boom -- 3.12 Aircraft Noise Certification. 3.13 NASA's Vision: Quiet Green Transport Technology -- 3.14 FAA's Vision: NextGen Technology -- 3.15 The European Vision for Sustainable Aviation -- 3.16 Summary -- References -- Chapter 4 Future Fuels and Energy Sources in Sustainable Aviation -- 4.1 Introduction -- 4.2 Alternative Jet Fuels (AJFs) -- 4.2.1 Choice of Feedstock -- 4.2.2 Conversion Pathways to Jet Fuel -- 4.2.3 AJF Evaluation and Certification/Qualification -- 4.2.4 Impact of Biofuel on Emissions -- 4.2.5 Advanced Biofuel Production -- 4.2.6 Lifecycle Assessment of Bio‐Based Aviation Fuel -- 4.2.7 Conversion of Bio-Crops to Electricity -- 4.3 Liquefied Natural Gas, LNG -- 4.3.1 Composition of Natural Gas and LNG -- 4.4 Hydrogen -- 4.4.1 Hydrogen Production -- 4.4.2 Hydrogen Delivery and Storage -- 4.4.3 Gravimetric and Volumetric Energy Density and Liquid Fuel Cost -- 4.5 Battery Systems -- 4.5.1 Battery Energy Density -- 4.5.2 Open-Cycle Battery Systems -- 4.5.3 Charging Batteries in Flight: Two Examples -- 4.5.4 All-Electric Aircraft: Voltair Concept Platform -- 4.6 Fuel Cell -- 4.7 Fuels for the Compact Fusion Reactor (CFR) -- 4.8 Summary -- References -- Chapter 5 Promising Technologies in Propulsion and Power -- 5.1 Introduction -- 5.2 Gas Turbine Engine -- 5.2.1 Brayton Cycle: Simple Gas Turbine Engine -- 5.2.2 Turbofan Engine -- 5.3 Distributed Combustion Concepts in Advanced Gas Turbine Engine Core -- 5.4 Multifuel (Cryogenic-Kerosene), Hybrid Propulsion Concept -- 5.5 Intercooled and Recuperated Turbofan Engines -- 5.6 Active Core Concepts -- 5.7 Topping Cycle: Wave Rotor Combustion -- 5.8 Pulse Detonation Engine (PDE) -- 5.9 Humphrey Cycle vs. Brayton: Thermodynamics -- 5.9.1 Idealized Laboratory PDE: Thrust Tube -- 5.9.2 Pulse Detonation Ramjets -- 5.9.3 Turbofan Engine with PDE -- 5.9.4 Pulse Detonation Rocket Engine (PDRE). 5.9.5 Vehicle-Level Performance Evaluation of PDE -- 5.10 Boundary-Layer Ingestion (BLI) and Distributed Propulsion (DP) Concept -- 5.10.1 Aircraft Drag Reduction Through BLI -- 5.10.2 Aircraft Noise Reduction: Advanced Concepts -- 5.10.3 Multidisciplinary Design Optimization (MDO) of a BWB Aircraft with BLI -- 5.11 Distributed Propulsion Concept in Early Aviation -- 5.12 Distributed Propulsion in Modern Aviation -- 5.12.1 Optimal Number of Propulsors in Distributed Propulsion -- 5.12.2 Optimal Propulsor Types in Distributed Propulsion -- 5.13 Interim Summary on Electric Propulsion (EP) -- 5.14 Synergetic Air-Breathing Rocket Engine -- SABRE -- 5.15 Compact Fusion Reactor: The Path to Clean, Unlimited Energy -- 5.16 Aircraft Configurations Using Advanced Propulsion Systems -- 5.17 Summary -- References -- Chapter 6 Pathways to Sustainable Aviation -- 6.1 Introduction -- 6.2 Pathways to Certification -- 6.3 Energy Pathways in Sustainable Aviation -- 6.4 Future of GT Engines -- 6.5 Summary -- References -- Index -- EULA.
9781119414988
Airplanes-Motors.
Electronic books.
TL701 .F376 2020
629.134/35