ORPP logo

Introduction to Satellite Remote Sensing : Atmosphere, Ocean, Land and Cryosphere Applications.

Emery, William.

Introduction to Satellite Remote Sensing : Atmosphere, Ocean, Land and Cryosphere Applications. - 1st ed. - 1 online resource (872 pages)

Front Cover -- Introduction to Satellite Remote Sensing -- Introduction to Satellite Remote Sensing: Atmosphere, Ocean, Land and Cryosphere Applications -- Copyright -- Dedication -- Contents -- 1 - THE HISTORY OF SATELLITE REMOTE SENSING -- 1.1 THE DEFINITION OF REMOTE SENSING -- 1.2 THE HISTORY OF SATELLITE REMOTE SENSING -- 1.2.1 THE NATURE OF LIGHT AND THE DEVELOPMENT OF AERIAL PHOTOGRAPHY -- 1.2.2 THE BIRTH OF EARTH-ORBITING SATELLITES -- 1.2.3 THE FUTURE OF POLAR-ORBITING SATELLITES -- 1.2.3.1 The Cross-Track Infrared Sounder -- 1.2.4 OTHER HISTORICAL SATELLITE PROGRAMS -- 1.2.4.1 The NIMBUS Program -- 1.2.4.2 The Landsat Program -- 1.2.4.3 The Defense Meteorological Satellite Program -- 1.2.4.4 Geostationary Weather Satellites -- 1.2.4.4.1 GOES-R -- 1.3 STUDY QUESTIONS -- 2 - BASIC ELECTROMAGNETIC CONCEPTS AND APPLICATIONS TO OPTICAL SENSORS -- 2.1 MAXWELL'S EQUATIONS -- 2.2 THE BASICS OF ELECTROMAGNETIC RADIATION -- 2.3 THE REMOTE SENSING PROCESS -- 2.4 THE CHARACTER OF ELECTROMAGNETIC WAVES -- 2.4.1 DEFINITION OF RADIOMETRIC TERMS -- 2.4.2 POLARIZATION AND THE STOKES VECTOR -- 2.4.3 REFLECTION AND REFRACTION AT THE INTERFACE OF TWO FLAT MEDIA -- 2.4.4 BREWSTER'S ANGLE -- 2.4.5 CRITICAL ANGLE -- 2.4.6 ALBEDO VERSUS REFLECTANCE -- 2.5 ELECTROMAGNETIC SPECTRUM: DISTRIBUTION OF RADIANT ENERGIES -- 2.5.1 GAMMA, X-RAY, AND ULTRAVIOLET PORTIONS OF THE ELECTROMAGNETIC SPECTRUM -- 2.5.2 VISIBLE SPECTRUM -- 2.5.3 THERMAL INFRARED SPECTRUM -- 2.5.4 MICROWAVE SPECTRUM -- 2.6 ATMOSPHERIC TRANSMISSION -- 2.6.1 SPECTRAL WINDOWS -- 2.6.2 ATMOSPHERIC EFFECTS -- 2.6.2.1 Beer-Lambert Absorption Law -- 2.6.2.2 Beer-Lambert Absorption Law: Opacity -- 2.6.2.3 Atmospheric Scattering -- 2.7 SENSORS TO MEASURE PARAMETERS OF THE EARTH'S SURFACE -- 2.8 INCOMING SOLAR RADIATION -- 2.9 INFRARED EMISSIONS -- 2.10 SURFACE REFLECTANCE: LAND TARGETS. 2.10.1 LAND SURFACE MIXTURES -- 2.11 STUDY QUESTIONS -- 3 - OPTICAL IMAGING SYSTEMS -- 3.1 PHYSICAL MEASUREMENT PRINCIPLES -- 3.2 BASIC OPTICAL SYSTEMS -- 3.2.1 PRISMS -- 3.2.2 FILTER-WHEEL RADIOMETERS -- 3.2.2.1 An Example: The Cloud Absorption Radiometer -- 3.2.2.2 Filters -- 3.2.3 GRATING SPECTROMETER -- 3.2.4 INTERFEROMETER -- 3.3 SPECTRAL RESOLVING POWER -- THE RAYLEIGH CRITERION -- 3.4 DETECTING THE SIGNAL -- 3.5 VIGNETTING -- 3.6 SCAN GEOMETRIES -- 3.7 FIELD OF VIEW -- 3.8 OPTICAL SENSOR CALIBRATION -- 3.8.1 VISIBLE WAVELENGTHS CALIBRATION -- 3.8.2 POLARIZATION FILTERS -- 3.9 LIGHT DETECTION AND RANGING -- 3.9.1 PHYSICS OF THE MEASUREMENT -- 3.9.2 OPTICAL AND TECHNOLOGICAL CONSIDERATIONS -- 3.9.3 APPLICATIONS OF LIDAR SYSTEMS -- 3.9.4 WIND LIDAR -- 3.9.4.1 Vector Wind Velocity Determination -- 3.9.4.1.1 Velocity Azimuth Display LIDAR Vector Wind Method -- 3.9.4.1.2 Doppler Beam Swinging LIDAR Vector Wind Method -- 3.9.4.2 Direct Detection Doppler Wind LIDAR -- 3.9.4.3 LIDAR Wind Summary -- 3.10 STUDY QUESTIONS -- 4 - Microwave Radiometry -- 4.1 Basic Concepts on Microwave Radiometry -- 4.1.1 Blackbody Radiation -- 4.1.2 Gray-body Radiation: Brightness Temperature and Emissivity -- 4.1.3 General Expressions for the Emissivity -- 4.1.3.1 Simple Emissivity Models: Emission From a Perfect Specular Surface -- 4.1.3.2 Simple Emissivity Models: Emission From a Lambertian Surface -- 4.1.3.1 Simple Emissivity Models: Emission From a Perfect Specular Surface -- 4.1.3.2 Simple Emissivity Models: Emission From a Lambertian Surface -- 4.1.4 Power Collected by an Antenna Surrounded by a Blackbody -- 4.1.5 Power Collected by an Antenna Surrounded by a Gray body: Apparent Temperature and Antenna Temperature -- 4.2 The Radiative Transfer Equation -- 4.2.1 The Complete Polarimetric Radiative Transfer Equation. 4.2.2 Usual Approximations to the Radiative Transfer Equation -- 4.3 Emission Behavior of Natural Surfaces -- 4.3.1 The Atmosphere -- 4.3.1.1 Attenuation by Atmospheric Gases -- 4.3.1.2 Attenuation by Rain -- 4.3.1.3 Attenuation by Clouds and Fog -- 4.3.2 The Ionosphere -- 4.3.2.1 Faraday Rotation -- 4.3.2.2 Ionospheric Losses: Absorption and Emission -- 4.3.3 Land Emission -- 4.3.3.1 Soil Dielectric Constant Models -- 4.3.3.2 Bare Soil Emission -- 4.3.3.3 Vegetated Soil Emission -- 4.3.3.4 Snow-Covered Soil Emission -- 4.3.3.5 Topography Effects -- 4.3.4 Ocean Emission -- 4.3.4.1 Water Dielectric Constant Behavior -- 4.3.4.2 Calm Ocean Emission -- 4.3.4.2.1 Influence of the Salinity -- 4.3.4.2.2 Influence of Frequency -- 4.3.4.2.3 Influence of the Water Temperature -- 4.3.4.3 Influence of the Sea State -- 4.3.4.3.1 Influence of the Look Angle -- 4.3.4.4 Emissivity of the Sea Surface Covered With Oil -- 4.3.4.5 Emissivity of the Sea Ice Surface -- 4.4 Understanding Microwave Radiometry Imagery -- 4.5 Applications of Microwave Radiometry -- 4.6 Sensors -- 4.6.1 Historical Review of Microwave Radiometers and Frequency Bands Used -- 4.6.2 Microwave Radiometers: Basic Performance -- 4.6.2.1 Spatial Resolution -- 4.6.2.1.1 Real Aperture Radiometers -- 4.6.2.1.2 Synthetic Aperture Radiometers -- 4.6.2.2 Radiometric Resolution -- 4.6.2.2.1 Real Aperture Radiometers -- 4.6.2.2.2 Synthetic Aperture Radiometers -- 4.6.2.3 Trade-off Between Spatial Resolution and Radiometric Precision -- 4.6.3 Real Aperture Radiometers -- 4.6.3.1 Instrument Considerations -- 4.6.3.1.1 Antenna Considerations -- 4.6.3.1.2 Receiver Considerations -- 4.6.3.1.3 Sampling Considerations -- 4.6.3.2 Types of Real Aperture Radiometers -- 4.6.3.3 Radiometer Calibration -- 4.6.3.3.1 External Calibration -- 4.6.3.3.1.1 Using Hot and Cold Targets. 4.6.3.3.1.2 Fully Polarimetric Radiometer Calibration Using External Targets -- 4.6.3.3.1.3 Tip Curves -- 4.6.3.3.1.4 Earth Targets: Vicarious Calibration -- 4.6.3.3.2 Internal Calibration -- 4.6.3.3.3 Radiometer Linearity -- 4.6.3.4 Radio Frequency Interference Detection and Mitigation -- 4.6.3.5 Example: Special Sensor Microwave Imager Radiometric and Geometric Corrections -- 4.6.4 Synthetic Aperture Radiometers -- 4.6.4.1 Types of Synthetic Aperture Radiometers -- 4.6.4.1.1 Mills Cross -- 4.6.4.1.2 Synthetic Aperture Radiometers using Matched Filtering -- 4.6.4.1.3 Synthetic Aperture Radiometers using Fourier Synthesis -- 4.6.4.1.3.1 1D Synthetic Aperture Radiometers: Array Thinning -- 4.6.4.1.3.2 2D Synthetic Aperture Radiometers: Array Topologies -- 4.6.4.1.3.3 Other Synthetic Aperture Radiometer Concepts -- 4.6.4.2 Radiometer Calibration -- 4.6.4.2.1 Internal Calibration -- 4.6.4.2.2 External Calibration -- 4.6.4.3 Image Reconstruction -- 4.6.4.4 ESA's SMOS Mission and the MIRAS Instrument -- 4.6.5 Future Trends in Microwave Radiometers -- 4.7 Study Questions -- 5 - RADAR -- 5.1 A COMPACT INTRODUCTION TO RADAR THEORY -- 5.1.1 REMOTE RANGING -- 5.1.2 DOPPLER ANALYSIS -- 5.2 RADAR SCATTERING -- 5.2.1 RADAR FREQUENCY BANDS -- 5.2.2 NORMALIZATIONS OF THE RADAR REFLECTIVITY -- 5.2.3 POINT VERSUS DISTRIBUTED SCATTERERS -- 5.2.4 SPECKLE, MULTILOOK, AND RADIOMETRIC RESOLUTION -- 5.2.5 RADAR EQUATION -- 5.2.6 RADAR WAVES AT AN INTERFACE -- 5.2.7 MULTIPLE REFLECTIONS: DOUBLE BOUNCE, TRIPLE BOUNCE, AND URBAN AREAS -- 5.2.8 BACKSCATTERING OF SURFACES -- 5.2.9 PERIODIC SCATTERING: THE BRAGG MODEL -- 5.2.10 BACKSCATTERING OF VOLUMES -- 5.2.11 OVERALL SUMMARY OF RADAR BACKSCATTER -- 5.2.12 DEPOLARIZATION OF RADAR WAVES -- 5.3 RADAR SYSTEMS -- 5.3.1 RANGE-DOPPLER RADARS -- 5.3.2 OPTIMAL RECEIVER FOR A SINGLE ECHO: THE MATCHED FILTER. 5.3.3 MATCHED FILTER VERSUS INVERSE FILTER -- 5.3.4 OPTIMAL RECEIVER FOR RANGE-DOPPLER RADAR ECHOES: THE BACKPROJECTION OPERATOR -- 5.3.5 RADAR WAVEFORMS -- 5.3.6 A PARADIGMATIC EXAMPLE: LINEAR FREQUENCY MODULATED PULSES (CHIRPS) -- 5.3.7 GEOMETRICAL DIALECTICS OF REMOTE SENSING RADARS -- 5.3.8 PROFILER VERSUS IMAGING RADARS -- 5.3.9 NADIR-LOOKING VERSUS SIDE-LOOKING RADARS -- 5.3.10 DISTORTIONS OF THE RADAR SIDE-LOOKING GEOMETRY -- 5.3.11 FLAT EARTH VERSUS CURVED SURFACE -- 5.3.12 GROUND VELOCITY -- 5.3.13 LOCAL VERSUS GLOBAL COORDINATE SYSTEMS -- 5.3.14 THE RADAR COORDINATES -- 5.3.15 GEOCODING -- 5.3.16 REAL VERSUS SYNTHETIC APERTURE -- 5.3.17 THE RADAR AS A COMMUNICATIONS SYSTEM -- 5.3.17.1 Block Diagram -- 5.3.17.2 Radar Transmitter -- 5.3.17.3 Radar Receiver -- 5.3.17.4 Central Electronics -- 5.3.17.5 Radar Antennas -- 5.3.17.6 Electromagnetic Radiation -- 5.3.17.7 Polarization of Antennas -- 5.3.17.8 Characterization of Antennas -- 5.3.17.9 Antenna Basics -- 5.3.17.10 Propagation of Radar Waves -- 5.3.17.10.1 Propagation Through the Troposphere -- 5.3.17.10.2 Propagation Through the Ionosphere -- 5.3.17.10.3 Delays, Phase Offsets, and Depolarization Caused by Inhomogeneity -- 5.4 SYNTHETIC APERTURE RADAR -- 5.4.1 A COMPACT INTRODUCTION TO SYNTHETIC APERTURE RADAR THEORY -- 5.4.1.1 Range and Azimuth Resolutions -- 5.4.1.2 Ambiguities and Doppler Centroid -- 5.4.1.3 An Important Synthetic Aperture Radar Choice: Swath Versus Azimuth Resolution -- 5.4.1.4 Synthetic Aperture Radar Imaging Modes -- 5.4.1.4.1 High Azimuth Resolution Modes: Spotlight -- 5.4.1.4.2 Wide-Swath Modes: ScanSAR and TOPS -- 5.4.1.4.3 Circular Synthetic Aperture Radar -- 5.4.1.4.4 Synthetic Aperture Radar Image Calibration -- 5.4.2 SYNTHETIC APERTURE RADAR SYSTEMS AND MISSIONS -- 5.4.3 FUNDAMENTALS OF SYNTHETIC APERTURE RADAR PROCESSING. 5.4.3.1 Exact Synthetic Aperture Radar Image Formation: The Backprojection Integral.

9780128092590


Artificial satellites in remote sensing.


Electronic books.

G70.4.E44 2017

621.36/78

© 2024 Resource Centre. All rights reserved.