Process Design Strategies for Biomass Conversion Systems.
Ng, Denny K. S.
Process Design Strategies for Biomass Conversion Systems. - 1st ed. - 1 online resource (386 pages)
Intro -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Acknowledgments -- Part 1 Process Design Tools for Biomass Conversion Systems -- Chapter 1 Early-Stage Design and Analysis of Biorefinery Networks -- 1.1 Introduction -- 1.2 Framework -- 1.2.1 Sustainability Analysis -- 1.2.2 Environmental Impact Assessment -- 1.3 Application: Early-Stage Design and Analysis of a Lignocellulosic Biorefinery -- 1.3.1 Biorefinery Networks and Identification of the Optimal Processing Paths -- 1.3.2 Sustainability Analysis with Respect to Resource Consumption and Environmental Impact -- 1.4 Conclusion -- Nomenclature -- References -- Chapter 2 Application of a Hierarchical Approach for the Synthesis of Biorefineries -- 2.1 Introduction -- 2.2 Problem Statement -- 2.3 General Methodology -- 2.4 Simulation of Flowsheets -- 2.5 Results and Discussion -- 2.5.1 Level 1 -- 2.5.2 Level 2 -- 2.5.3 Level 3 -- 2.5.4 Level 4 -- 2.5.5 Level 5 -- 2.5.6 Level 6 -- 2.6 Conclusions -- References -- Chapter 3 A Systematic Approach for Synthesis of an Integrated Palm Oil-Based Biorefinery -- 3.1 Introduction -- 3.2 Problem Statement -- 3.3 Problem Formulation -- 3.4 Case Study -- 3.5 Conclusions -- References -- Chapter 4 Design Strategies for Integration of Biorefinery Concepts at Existing Industrial Process Sites: Case Study of a Biorefinery Producing Ethylene from Lignocellulosic Feedstock as an Intermediate Platform for a Chemical Cluster -- 4.1 Introduction -- 4.1.1 Biorefinery Concepts -- 4.1.2 Advantages of Co-locating Biorefinery Operations at an Industrial Cluster Site -- 4.1.3 Ethylene Production from Biomass Feedstock -- 4.1.4 Design Strategy -- 4.2 Methodology -- 4.2.1 Process Simulation -- 4.2.2 Performance Indicator for Heat Integration Opportunities -- 4.3 Results -- 4.3.1 Process Simulation. 4.3.2 Integration of Separate Ethanol and Ethylene Production Processes -- 4.3.3 Material and Heat Integration of the Two Processes -- 4.3.4 Integration Opportunities with the Existing Chemical Cluster -- 4.3.5 Performance Indicator for Heat Integration Opportunities -- 4.4 Conclusions and Discussion -- Acknowledgements -- Appendix -- References -- Chapter 5 Synthesis of Biomass-Based Tri-generation Systems with Variations in Biomass Supply and Energy Demand -- 5.1 Introduction -- 5.2 Problem Statement -- 5.3 Multi-period Optimization Formulation -- 5.3.1 Material Balance -- 5.3.2 Energy Balance -- 5.3.3 Economic Analysis -- 5.4 Case Study -- 5.5 Analysis of the Optimization Results -- 5.6 Conclusion and Future Work -- Appendix A -- Nomenclature -- References -- Part 2 Regional Biomass Supply Chains and Risk Management -- Chapter 6 Large-Scale Cultivation of Microalgae for Fuel -- 6.1 Introduction -- 6.2 Cultivation -- 6.2.1 Organisms for Growth -- 6.2.2 Selection of a Species for Growth -- 6.2.3 Types of Growth Systems -- 6.2.4 Nutrients, Water, and Carbon Dioxide for Growth -- 6.2.5 Large-Scale Commercial Microalgae Growth -- 6.3 Harvesting and Dewatering -- 6.3.1 Separation Characteristics of Various Species -- 6.3.2 Gravity Sedimentation -- 6.3.3 Flocculation -- 6.3.4 Dissolved Air Flotation -- 6.3.5 Centrifugation -- 6.3.6 Filtration -- 6.3.7 Electrocoagulation -- 6.4 Conversion to Products -- 6.4.1 Utilization of the Lipid Fraction (Biodiesel) -- 6.4.2 Utilization of the Carbohydrate Fraction (Bioethanol and Biogas) -- 6.4.3 Utilization of the Protein Fraction (Nitrogenous Compounds) -- 6.4.4 Thermochemical Conversion -- 6.5 Conclusions -- Acknowledgments -- References -- Chapter 7 Optimal Planning of Sustainable Supply Chains for the Production of Ambrox based on Ageratina jocotepecana in Mexico -- 7.1 Introduction -- 7.2 Ambrox Supply Chain. 7.3 Biomass Cultivation -- 7.4 Transportation System -- 7.5 Ambrox Production -- 7.6 Bioethanol Production -- 7.7 Supply Chain Optimization Model -- 7.8 Case Study -- 7.9 Conclusions -- Acknowledgments -- Nomenclature -- References -- Chapter 8 Inoperability Input-Output Modeling Approach to Risk Analysis in Biomass Supply Chains -- 8.1 Introduction -- 8.2 Input-Output Model -- 8.3 Inoperability Input-Output Modeling -- 8.3.1 Inoperability -- 8.3.2 Interdependency Matrix -- 8.3.3 Perturbation -- 8.3.4 Economic Loss -- 8.4 Illustrative Example -- 8.5 Case Study 1 -- 8.6 Case Study 2 -- 8.7 Conclusions -- 8.8 Further Reading -- Appendix A LINGO Code for Illustrative Example -- Appendix B LINGO Code for Case Study 1 -- Appendix C Interval Arithmetic -- Appendix D Analytic Hierarchy Process -- Nomenclature -- References -- Part 3 Other Applications of Biomass Conversion Systems -- Chapter 9 Process Systems Engineering Tools for Biomass Polygeneration Systems with Carbon Capture and Reuse -- 9.1 Introduction -- 9.2 Production Using Carbon Dioxide -- 9.2.1 Chemical Production from Carbon Dioxide -- 9.2.2 Material Production from Carbon Dioxide -- 9.3 Process Systems Engineering Tools for Carbon Dioxide Capture and Reuse -- 9.3.1 Techno-economic Analysis Tools for Carbon Dioxide Capture and Reuse in Integrated Flowsheet -- 9.4 CO2 Pinch Analysis Tool for Carbon Dioxide Capture and Reuse in Integrated Flowsheet -- 9.4.1 Overview of the Methodology for CO2 Integration -- 9.4.2 Case Study: CO2 Utilisation and Integration in an Algae-Based Biorefinery -- 9.5 Conclusions -- References -- Chapter 10 Biomass-Fueled Organic Rankine Cycle-Based Cogeneration System -- 10.1 Introduction -- 10.2 Working Fluids for ORC -- 10.3 Expanders for ORC -- 10.4 Existing Biomass-Fueled ORC-Based Cogeneration Plants -- 10.5 Different Configurations of ORC. 10.5.1 Regeneration Using an Internal Heat Exchanger -- 10.5.2 Turbine Bleeding -- 10.5.3 Turbine Bleeding and Regeneration -- 10.5.4 Thermodynamic Analysis of the ORC with Turbine Bleeding and Regeneration -- 10.6 Process Description -- 10.7 Illustrative Example -- 10.8 Conclusions -- References -- Chapter 11 Novel Methodologies for Optimal Product Design from Biomass -- 11.1 Introduction -- 11.2 CAMD -- 11.2.1 Signature-Based Molecular Design -- 11.2.2 Multi-objective Chemical Product Design with Consideration of Property Prediction Uncertainty -- 11.3 Two-Stage Optimisation Approach for Optimal Product Design from Biomass -- 11.3.1 Stage 1: Product Design -- 11.3.2 Stage 2: Integrated Biorefinery Design -- 11.4 Case Study -- 11.4.1 Design of Optimal Product -- 11.4.2 Selection of Optimal Conversion Pathway -- 11.5 Conclusions -- 11.6 Future Opportunities -- Nomenclature -- Appendix -- References -- Chapter 12 The Role of Process Integration in Reviewing and Comparing Biorefinery Processing Routes: The Case of Xylitol -- 12.1 Introduction -- 12.2 Motivating Example -- 12.3 The Three-Layer Approach -- 12.4 Production Paths to Xylitol -- 12.4.1 Catalytic Process -- 12.4.2 Biotechnological Process -- 12.5 Scope for Process and Energy Integration -- 12.5.1 Catalytic Process -- 12.5.2 Biotechnological Process -- 12.5.3 Summarizing Results -- 12.6 Conclusion -- Acknowledgment -- References -- Chapter 13 Determination of Optimum Condition for the Production of Rice Husk-Derived Bio-oil by Slow Pyrolysis Process -- 13.1 Introduction -- 13.2 Experimental Study -- 13.2.1 Biomass Preparation and Characterization -- 13.2.2 Experimental Procedure -- 13.2.3 Equipment -- 13.2.4 Characterization of Bio-oil -- 13.3 Results and Discussion -- 13.3.1 Characterization of RH -- 13.3.2 Characterization of Bio-oil -- 13.3.3 Parametric Analysis. 13.3.4 Field Emission Scanning Electron Microscope -- 13.3.5 Chemical Composition (GC-MS) Analysis -- 13.4 Conclusion -- Acknowledgement -- References -- Chapter 14 Overview of Safety and Health Assessment for Biofuel Production Technologies -- 14.1 Introduction -- 14.2 Inherent Safety in Process Design -- 14.3 Inherent Occupational Health in Process Design -- 14.4 Design Paradox -- 14.5 Introduction to Biofuel Technologies -- 14.6 Safety Assessment of Biofuel Production Technologies -- 14.7 Health Assessment of Biofuel Production Technologies -- 14.8 Proposed Ideas for Future Safety and Health Assessment in Biofuel Production Technologies -- 14.9 Conclusions -- References -- Index -- EULA.
9781118699126
Biomass chemicals.
Electronic books.
TP248.B55 -- .P76 2016eb
Process Design Strategies for Biomass Conversion Systems. - 1st ed. - 1 online resource (386 pages)
Intro -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Acknowledgments -- Part 1 Process Design Tools for Biomass Conversion Systems -- Chapter 1 Early-Stage Design and Analysis of Biorefinery Networks -- 1.1 Introduction -- 1.2 Framework -- 1.2.1 Sustainability Analysis -- 1.2.2 Environmental Impact Assessment -- 1.3 Application: Early-Stage Design and Analysis of a Lignocellulosic Biorefinery -- 1.3.1 Biorefinery Networks and Identification of the Optimal Processing Paths -- 1.3.2 Sustainability Analysis with Respect to Resource Consumption and Environmental Impact -- 1.4 Conclusion -- Nomenclature -- References -- Chapter 2 Application of a Hierarchical Approach for the Synthesis of Biorefineries -- 2.1 Introduction -- 2.2 Problem Statement -- 2.3 General Methodology -- 2.4 Simulation of Flowsheets -- 2.5 Results and Discussion -- 2.5.1 Level 1 -- 2.5.2 Level 2 -- 2.5.3 Level 3 -- 2.5.4 Level 4 -- 2.5.5 Level 5 -- 2.5.6 Level 6 -- 2.6 Conclusions -- References -- Chapter 3 A Systematic Approach for Synthesis of an Integrated Palm Oil-Based Biorefinery -- 3.1 Introduction -- 3.2 Problem Statement -- 3.3 Problem Formulation -- 3.4 Case Study -- 3.5 Conclusions -- References -- Chapter 4 Design Strategies for Integration of Biorefinery Concepts at Existing Industrial Process Sites: Case Study of a Biorefinery Producing Ethylene from Lignocellulosic Feedstock as an Intermediate Platform for a Chemical Cluster -- 4.1 Introduction -- 4.1.1 Biorefinery Concepts -- 4.1.2 Advantages of Co-locating Biorefinery Operations at an Industrial Cluster Site -- 4.1.3 Ethylene Production from Biomass Feedstock -- 4.1.4 Design Strategy -- 4.2 Methodology -- 4.2.1 Process Simulation -- 4.2.2 Performance Indicator for Heat Integration Opportunities -- 4.3 Results -- 4.3.1 Process Simulation. 4.3.2 Integration of Separate Ethanol and Ethylene Production Processes -- 4.3.3 Material and Heat Integration of the Two Processes -- 4.3.4 Integration Opportunities with the Existing Chemical Cluster -- 4.3.5 Performance Indicator for Heat Integration Opportunities -- 4.4 Conclusions and Discussion -- Acknowledgements -- Appendix -- References -- Chapter 5 Synthesis of Biomass-Based Tri-generation Systems with Variations in Biomass Supply and Energy Demand -- 5.1 Introduction -- 5.2 Problem Statement -- 5.3 Multi-period Optimization Formulation -- 5.3.1 Material Balance -- 5.3.2 Energy Balance -- 5.3.3 Economic Analysis -- 5.4 Case Study -- 5.5 Analysis of the Optimization Results -- 5.6 Conclusion and Future Work -- Appendix A -- Nomenclature -- References -- Part 2 Regional Biomass Supply Chains and Risk Management -- Chapter 6 Large-Scale Cultivation of Microalgae for Fuel -- 6.1 Introduction -- 6.2 Cultivation -- 6.2.1 Organisms for Growth -- 6.2.2 Selection of a Species for Growth -- 6.2.3 Types of Growth Systems -- 6.2.4 Nutrients, Water, and Carbon Dioxide for Growth -- 6.2.5 Large-Scale Commercial Microalgae Growth -- 6.3 Harvesting and Dewatering -- 6.3.1 Separation Characteristics of Various Species -- 6.3.2 Gravity Sedimentation -- 6.3.3 Flocculation -- 6.3.4 Dissolved Air Flotation -- 6.3.5 Centrifugation -- 6.3.6 Filtration -- 6.3.7 Electrocoagulation -- 6.4 Conversion to Products -- 6.4.1 Utilization of the Lipid Fraction (Biodiesel) -- 6.4.2 Utilization of the Carbohydrate Fraction (Bioethanol and Biogas) -- 6.4.3 Utilization of the Protein Fraction (Nitrogenous Compounds) -- 6.4.4 Thermochemical Conversion -- 6.5 Conclusions -- Acknowledgments -- References -- Chapter 7 Optimal Planning of Sustainable Supply Chains for the Production of Ambrox based on Ageratina jocotepecana in Mexico -- 7.1 Introduction -- 7.2 Ambrox Supply Chain. 7.3 Biomass Cultivation -- 7.4 Transportation System -- 7.5 Ambrox Production -- 7.6 Bioethanol Production -- 7.7 Supply Chain Optimization Model -- 7.8 Case Study -- 7.9 Conclusions -- Acknowledgments -- Nomenclature -- References -- Chapter 8 Inoperability Input-Output Modeling Approach to Risk Analysis in Biomass Supply Chains -- 8.1 Introduction -- 8.2 Input-Output Model -- 8.3 Inoperability Input-Output Modeling -- 8.3.1 Inoperability -- 8.3.2 Interdependency Matrix -- 8.3.3 Perturbation -- 8.3.4 Economic Loss -- 8.4 Illustrative Example -- 8.5 Case Study 1 -- 8.6 Case Study 2 -- 8.7 Conclusions -- 8.8 Further Reading -- Appendix A LINGO Code for Illustrative Example -- Appendix B LINGO Code for Case Study 1 -- Appendix C Interval Arithmetic -- Appendix D Analytic Hierarchy Process -- Nomenclature -- References -- Part 3 Other Applications of Biomass Conversion Systems -- Chapter 9 Process Systems Engineering Tools for Biomass Polygeneration Systems with Carbon Capture and Reuse -- 9.1 Introduction -- 9.2 Production Using Carbon Dioxide -- 9.2.1 Chemical Production from Carbon Dioxide -- 9.2.2 Material Production from Carbon Dioxide -- 9.3 Process Systems Engineering Tools for Carbon Dioxide Capture and Reuse -- 9.3.1 Techno-economic Analysis Tools for Carbon Dioxide Capture and Reuse in Integrated Flowsheet -- 9.4 CO2 Pinch Analysis Tool for Carbon Dioxide Capture and Reuse in Integrated Flowsheet -- 9.4.1 Overview of the Methodology for CO2 Integration -- 9.4.2 Case Study: CO2 Utilisation and Integration in an Algae-Based Biorefinery -- 9.5 Conclusions -- References -- Chapter 10 Biomass-Fueled Organic Rankine Cycle-Based Cogeneration System -- 10.1 Introduction -- 10.2 Working Fluids for ORC -- 10.3 Expanders for ORC -- 10.4 Existing Biomass-Fueled ORC-Based Cogeneration Plants -- 10.5 Different Configurations of ORC. 10.5.1 Regeneration Using an Internal Heat Exchanger -- 10.5.2 Turbine Bleeding -- 10.5.3 Turbine Bleeding and Regeneration -- 10.5.4 Thermodynamic Analysis of the ORC with Turbine Bleeding and Regeneration -- 10.6 Process Description -- 10.7 Illustrative Example -- 10.8 Conclusions -- References -- Chapter 11 Novel Methodologies for Optimal Product Design from Biomass -- 11.1 Introduction -- 11.2 CAMD -- 11.2.1 Signature-Based Molecular Design -- 11.2.2 Multi-objective Chemical Product Design with Consideration of Property Prediction Uncertainty -- 11.3 Two-Stage Optimisation Approach for Optimal Product Design from Biomass -- 11.3.1 Stage 1: Product Design -- 11.3.2 Stage 2: Integrated Biorefinery Design -- 11.4 Case Study -- 11.4.1 Design of Optimal Product -- 11.4.2 Selection of Optimal Conversion Pathway -- 11.5 Conclusions -- 11.6 Future Opportunities -- Nomenclature -- Appendix -- References -- Chapter 12 The Role of Process Integration in Reviewing and Comparing Biorefinery Processing Routes: The Case of Xylitol -- 12.1 Introduction -- 12.2 Motivating Example -- 12.3 The Three-Layer Approach -- 12.4 Production Paths to Xylitol -- 12.4.1 Catalytic Process -- 12.4.2 Biotechnological Process -- 12.5 Scope for Process and Energy Integration -- 12.5.1 Catalytic Process -- 12.5.2 Biotechnological Process -- 12.5.3 Summarizing Results -- 12.6 Conclusion -- Acknowledgment -- References -- Chapter 13 Determination of Optimum Condition for the Production of Rice Husk-Derived Bio-oil by Slow Pyrolysis Process -- 13.1 Introduction -- 13.2 Experimental Study -- 13.2.1 Biomass Preparation and Characterization -- 13.2.2 Experimental Procedure -- 13.2.3 Equipment -- 13.2.4 Characterization of Bio-oil -- 13.3 Results and Discussion -- 13.3.1 Characterization of RH -- 13.3.2 Characterization of Bio-oil -- 13.3.3 Parametric Analysis. 13.3.4 Field Emission Scanning Electron Microscope -- 13.3.5 Chemical Composition (GC-MS) Analysis -- 13.4 Conclusion -- Acknowledgement -- References -- Chapter 14 Overview of Safety and Health Assessment for Biofuel Production Technologies -- 14.1 Introduction -- 14.2 Inherent Safety in Process Design -- 14.3 Inherent Occupational Health in Process Design -- 14.4 Design Paradox -- 14.5 Introduction to Biofuel Technologies -- 14.6 Safety Assessment of Biofuel Production Technologies -- 14.7 Health Assessment of Biofuel Production Technologies -- 14.8 Proposed Ideas for Future Safety and Health Assessment in Biofuel Production Technologies -- 14.9 Conclusions -- References -- Index -- EULA.
9781118699126
Biomass chemicals.
Electronic books.
TP248.B55 -- .P76 2016eb