ORPP logo
Image from Google Jackets

Computerized Adaptive Testing in Kinanthropology : Monte Carlo Simulations Using the Physical Self-Description Questionnaire.

By: Material type: TextTextPublisher: Prague : Karolinum Press, 2019Copyright date: ©2019Edition: 1st edDescription: 1 online resource (132 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9788024639840
Subject(s): Genre/Form: Additional physical formats: Print version:: Computerized Adaptive Testing in Kinanthropology: Monte Carlo Simulations Using the Physical Self-Description QuestionnaireDDC classification:
  • 371.260285
LOC classification:
  • LB3060.32.C65 .K663 2019
Online resources:
Contents:
Cover -- Contents -- Acknowledgements -- 1. Brief introductionto measurement(in Kinanthropology) -- 2. Historical Pathsto Modern Test Theory -- 3. Groundwork forItem Response Theory -- 4. Item Response Theory (IRT) -- 4.1 Introduction -- 4.2 Unidimensional dichotomous IRT models -- 4.3 Unidimensional polytomous IRT models -- 4.4 Assumptions required for unidimensional IRT models -- 4.5 Parameter estimation in IRT models -- 4.5.1 Latent trait (θ) estimation -- 4.5.2 Item parameters estimation -- 4.6 Information and standard error of the θ estimates -- 5. Computerized AdaptiveTesting (CAT): Historicaland conceptual origins -- 6. Testing algorithmsin unidimensionalIRT-based CAT -- 6.1 Starting -- 6.2 Continuing -- 6.3 Stopping -- 6.4 Practical issues related to item selection in CAT -- 6.4.1 Item pool -- 6.4.2 Content balancing -- 6.4.3 Exposure control -- 6.5 Evaluation of item selection and trait estimation methodsused in computerized adaptive testing algorithms -- 7. Empirical part -problem statement -- 8. Aims and hypotheses -- 9. Methods -- 9.1 Item pool, IRT model used for item calibration,dimensionality analysis -- 9.1.1 General description of the item pool -- 9.1.2 Item calibration -- 9.1.3 Dimensionality analysis -- 9.2 CAT simulation design and specifications -- 9.2.1 Step 1. Simulate latent trait values (true θ) -- 9.2.2 Step 2. Supply item parameters for the intended item pool -- 9.2.3 Step 3. Set CAT algorithm options -- 9.2.4 Step 4. Simulate CAT administration -- 9.3 Analysis of simulation results -- 10. Results -- 10.1 Dimensionality -- 10.2 Number of administered items in CAT simulation -- 10.3 Bias of the CAT latent trait estimates -- 10.4 Correlations -- 11. Discussion -- 12. Conclusions -- Summary -- References -- Appendices.
Appendix A - IRT parameters (a - discrimination and b's -thresholds) for the Physical Self-Description Questionnaireitems (source: Flatcher &amp -- Hattie, 2004) -- Appendix B - R code used for the simulation of the PSDQ CAT -- Appendix C - Test information and corresponding standarderror for the Physical Self-Description Questionnaireitem pool -- Appendix D - Example of R code used to create Figure 1 -- Appendix E - Online application for adaptive testing usingthe Physical Self-Description Questionnaire -- List of Tables -- List of Figures.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Contents -- Acknowledgements -- 1. Brief introductionto measurement(in Kinanthropology) -- 2. Historical Pathsto Modern Test Theory -- 3. Groundwork forItem Response Theory -- 4. Item Response Theory (IRT) -- 4.1 Introduction -- 4.2 Unidimensional dichotomous IRT models -- 4.3 Unidimensional polytomous IRT models -- 4.4 Assumptions required for unidimensional IRT models -- 4.5 Parameter estimation in IRT models -- 4.5.1 Latent trait (θ) estimation -- 4.5.2 Item parameters estimation -- 4.6 Information and standard error of the θ estimates -- 5. Computerized AdaptiveTesting (CAT): Historicaland conceptual origins -- 6. Testing algorithmsin unidimensionalIRT-based CAT -- 6.1 Starting -- 6.2 Continuing -- 6.3 Stopping -- 6.4 Practical issues related to item selection in CAT -- 6.4.1 Item pool -- 6.4.2 Content balancing -- 6.4.3 Exposure control -- 6.5 Evaluation of item selection and trait estimation methodsused in computerized adaptive testing algorithms -- 7. Empirical part -problem statement -- 8. Aims and hypotheses -- 9. Methods -- 9.1 Item pool, IRT model used for item calibration,dimensionality analysis -- 9.1.1 General description of the item pool -- 9.1.2 Item calibration -- 9.1.3 Dimensionality analysis -- 9.2 CAT simulation design and specifications -- 9.2.1 Step 1. Simulate latent trait values (true θ) -- 9.2.2 Step 2. Supply item parameters for the intended item pool -- 9.2.3 Step 3. Set CAT algorithm options -- 9.2.4 Step 4. Simulate CAT administration -- 9.3 Analysis of simulation results -- 10. Results -- 10.1 Dimensionality -- 10.2 Number of administered items in CAT simulation -- 10.3 Bias of the CAT latent trait estimates -- 10.4 Correlations -- 11. Discussion -- 12. Conclusions -- Summary -- References -- Appendices.

Appendix A - IRT parameters (a - discrimination and b's -thresholds) for the Physical Self-Description Questionnaireitems (source: Flatcher &amp -- Hattie, 2004) -- Appendix B - R code used for the simulation of the PSDQ CAT -- Appendix C - Test information and corresponding standarderror for the Physical Self-Description Questionnaireitem pool -- Appendix D - Example of R code used to create Figure 1 -- Appendix E - Online application for adaptive testing usingthe Physical Self-Description Questionnaire -- List of Tables -- List of Figures.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.