ORPP logo
Image from Google Jackets

Corrosion and Materials in Hydrocarbon Production : A Compendium of Operational and Engineering Aspects.

By: Contributor(s): Material type: TextTextSeries: Wiley-ASME Press SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2019Copyright date: ©2018Edition: 1st edDescription: 1 online resource (339 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119515715
Subject(s): Genre/Form: Additional physical formats: Print version:: Corrosion and Materials in Hydrocarbon ProductionLOC classification:
  • TA462 .K476 2019
Online resources:
Contents:
Intro -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgement -- Chapter 1 Introduction -- 1.1 Scope and Objectives -- 1.1.1 Contents of the Book -- 1.2 The Impact of Corrosion -- 1.2.1 The Overall Financial Impact -- 1.3 Principal Types of Corrosion in Hydrocarbon Production -- 1.3.1 Corrosion Threats -- 1.4 The Way Ahead: Positive Corrosion -- 1.5 Summary -- Note -- References -- Bibliography -- Chapter 2 Carbon and Low Alloy Steels (CLASs) -- 2.1 Steel Products -- 2.1.1 Structural Services -- 2.1.2 Pressure Containment -- 2.2 Development of Mechanical Properties -- 2.2.1 Heat Treatment -- 2.2.1.1 Normalising -- 2.2.1.2 Quenched and Tempering -- 2.2.1.3 Mechanical Working -- 2.2.2 Industrial Processes -- 2.3 Strengthening Mechanisms -- 2.3.1 Solid Solution Strengthening -- 2.3.2 Grain Refinement -- 2.3.3 Mechanical Working -- 2.3.4 Dispersion Strengthening -- 2.4 Hardenability -- 2.5 Weldability -- 2.6 Line Pipe Steels -- 2.7 Well Completion Downhole Tubulars -- 2.8 Internally Clad Materials -- 2.9 Summary -- Notes -- Reference -- Bibliography -- API/ISO Specifications -- ASME Standard -- Further Reading -- Chapter 3 Corrosion-Resistant Alloys (CRAs) -- 3.1 Background -- 3.2 Alloying Elements, Microstructures, and their Significance for Corrosion Performance -- 3.2.1 Alloying Elements -- 3.2.2 Improving Corrosion Resistance -- 3.2.3 Pitting Resistance Equivalent Number (PREN) -- 3.2.4 The Schaeffler Diagram and its Application -- 3.2.4.1 Nickel and Chromium Equivalents -- 3.3 Common Types/Grades of CRA Used in the Hydrocarbon Production Systems -- 3.3.1 Nominal Compositions -- 3.3.2 Mechanical Properties and Strengthening Methods -- 3.3.3 Yield Strength -- 3.4 Important Metallurgical Aspects of CRAs -- 3.4.1 Martensitic and Super Martensitic Stainless Steels (MSSs and SMSSs).
3.4.2 Duplex and Super Duplex Stainless Steels (DSSs and SDSSs) -- 3.4.3 Austenitic Stainless Steels (SSs) -- 3.4.4 Austenitic Fe- and Ni-Based Alloys -- 3.4.5 Titanium Alloys -- 3.5 Limits of Application -- 3.6 Selection Criteria -- 3.6.1 Selection Criteria Check List -- 3.6.2 Application of CRAs -- 3.6.3 Notable Points to Consider for Well Completion -- 3.7 Future Demands and Requirements -- 3.8 Summary -- Note -- References -- Bibliography -- Specifications -- Further Reading -- Chapter 4 Water Chemistry -- 4.1 Sources of Water -- 4.2 Water Chemistry -- 4.3 Other Impacts on Corrosivity -- 4.3.1 Mineral Scale -- 4.3.2 Bacterial Analyses -- 4.3.3 Iron Sulphide -- 4.3.4 Other Chemicals -- 4.4 Water Sampling Locations and Analysis Techniques -- 4.4.1 Sampling -- 4.4.2 Interpretation of Results -- 4.4.3 Monitoring Corrosion Management Strategies -- 4.5 Influential Parameters in System Corrosivity -- 4.6 Summary -- Notes -- References -- Bibliography -- Standards -- Chapter 5 Internal Metal Loss Corrosion Threats -- 5.1 CO2 Metal Loss Corrosion -- 5.1.1 The Mechanism -- 5.1.2 Types of Damage -- 5.1.2.1 Pitting -- 5.1.2.2 Mesa-Type Attack -- 5.1.2.3 Flow-Induced Localised Corrosion -- 5.2 Key Influential Factors -- 5.2.1 Notable Parameters -- 5.2.1.1 The In-Situ pH -- 5.2.1.2 The Effect of Organic Acid -- 5.3 Metal Loss CO2 Corrosion Prediction -- 5.3.1 Industry Practice -- 5.4 Metal Loss Corrosion in Mixed H2S/CO2 Containing Streams -- 5.4.1 Assessment Methods -- 5.5 Summary -- References -- Bibliography -- Chapter 6 Environmental Cracking (EC) -- 6.1 Environmental Cracking Threat in Steels -- 6.2 EC Associated with Hydrogen Sulphide -- 6.2.1 Corrosion Implications and Mechanism -- 6.2.2 Types of H2S Corrosion Threat -- 6.2.3 Categories, Types, Manifestation, and Mitigation Measures of H2S EC Threats -- 6.2.3.1 Sulphide Stress Cracking (SSC).
6.2.3.2 Hydrogen Internal Pressure Effects -- 6.2.3.3 Chloride Stress Corrosion Cracking (Cl-SCC) -- 6.2.3.4 Cracking in Related Environments -- 6.2.3.5 Operating Temperatures -- 6.3 Current Industry Practices -- 6.4 ISO 15156 -- 6.4.1 Part 1 -- 6.4.2 Part 2 -- 6.4.2.1 Severity of Operating Conditions for CLASs -- 6.4.2.2 Key Governing Criteria -- 6.4.3 Part 3 -- 6.5 Summary -- Notes -- Bibliography -- Chapter 7 Corrosion in Injection Systems -- 7.1 The Intent -- 7.2 Injection Systems -- 7.2.1 Treated Water -- 7.3 Water Treatment Methods -- 7.3.1 Mechanical Treatment -- 7.3.2 Chemical Treatments -- 7.3.2.1 Oxygen Removal -- 7.3.2.2 Injectivity Problems and Drag Reduction -- 7.3.2.3 Coagulants and Filter Aids -- 7.3.2.4 Bacterial Growth and Proliferation -- 7.3.2.5 Antifoam -- 7.4 Water Corrosivity -- 7.4.1 Water Quality -- 7.5 Means of Corrosion Prediction -- 7.5.1 Oldfield and Todd -- 7.5.2 Berger and Hau -- 7.5.3 The Appropriate Model -- 7.6 Materials Options -- 7.6.1 Tubing -- 7.6.1.1 CLAS -- 7.6.1.2 Low Cr-Containing Steels -- 7.6.1.3 Plastic-Coated Tubulars -- 7.6.1.4 Glass Reinforced Epoxy-Lined CLAS Tubing -- 7.6.1.5 CRAs -- 7.6.2 Pipelines and Piping -- 7.6.2.1 Bare CLAS -- 7.6.2.2 Internally Lined CLAS -- 7.6.2.3 CRAs -- 7.7 Supplementary Notes -- 7.8 Hydrotesting -- 7.9 Summary -- Note -- References -- Bibliography -- Chapter 8 Corrosion Mitigation by the Use of Inhibitor Chemicals -- 8.1 Inhibitor Characteristics -- 8.1.1 Key Benefits -- 8.1.2 Inhibitor Formulation -- 8.1.3 Inhibitor Species and Functionality -- 8.1.3.1 Functionality -- 8.1.4 Inhibitor Performance -- 8.1.4.1 The Effect of Fluid Flow -- 8.1.5 Environmental Acceptance -- 8.2 Inhibitor Testing and Application -- 8.2.1 Operating Conditions -- 8.2.2 Inhibitor Testing/Selection -- 8.2.2.1 The Media -- 8.2.2.2 Appropriate Tests -- 8.3 Inhibitor Application/Deployment.
8.3.1 Continuous Injection -- 8.3.1.1 Inhibitor Availability -- 8.3.2 Field Evaluation -- 8.3.3 Wet Gas Lines -- 8.3.4 Downhole Inhibition -- 8.3.4.1 Batch Treatment -- 8.4 Summary -- Note -- References -- Chapter 9 Coating Systems -- 9.1 External Pipeline Coatings -- 9.1.1 Fusion-Bonded Epoxy (FBE) Coating -- 9.1.2 Polyolefin Coatings -- 9.1.3 Field Joint Coatings -- 9.2 Internal Coating and Lining -- 9.2.1 Plastic-Coated Tubular (PCT) -- 9.2.2 Glass Reinforced Epoxy (GRE) Lined CLAS Tubing -- 9.2.3 Internal Coating of Tanks and Vessels -- 9.3 External Painting of Structures -- 9.3.1 Offshore Structures -- 9.4 Summary -- References -- Bibliography -- Chapter 10 Corrosion Trending -- 10.1 The Purpose of Corrosion Trending -- 10.2 Corrosion Monitoring -- 10.2.1 Corrosion Rate Monitoring -- 10.2.2 Weight Loss Coupons -- 10.2.3 Electrical Resistance (ER) Probes -- 10.2.4 Electrochemical Methods -- 10.2.5 Locating Internal Corrosion Monitoring Devices -- 10.2.6 Erosion Rate Monitoring -- 10.2.7 Access Fittings -- 10.2.8 Cost Considerations -- 10.2.9 Safety Considerations -- 10.3 Corrosion Barrier Monitoring -- 10.4 Collection and Analysis of Real-Time Monitoring Data -- 10.5 Downhole Corrosion Monitoring -- 10.6 Inspection Techniques -- 10.6.1 Equipment Portability -- 10.6.2 Visualising Inspection Data -- 10.7 Intelligent Pigging -- 10.8 Future Considerations -- 10.9 Summary -- References -- Bibliography -- Specifications -- Chapter 11 Microbiologically Influenced Corrosion (MIC) -- 11.1 Main Features -- 11.2 The Primary Causes -- 11.2.1 Summary of Key Parameters -- 11.3 The Motive for Promotion of Corrosion by Micro-organisms -- 11.3.1 The Corrosion Process -- 11.3.2 Microbial Activity Inside the Biofilms -- 11.3.3 Bridging Surface to Biofilm -- 11.3.4 Summary Mechanism -- 11.4 Most Susceptible Locations and Conditions.
11.4.1 Most MIC-Prone Environments and Facilities -- 11.4.2 Least MIC-Prone Environments and Facilities -- 11.4.3 Uncertain Limits and Conditions of Occurrence -- 11.4.4 Brief Overview -- 11.4.5 The Anticipated Damage Rate -- 11.5 Potential Prevention Measures -- 11.5.1 Biocide Treatments -- 11.5.2 Periodic Pigging -- 11.5.3 Inhibitor Treatments -- 11.5.4 Cleanliness -- 11.5.5 Cathodic Protection and Coatings -- 11.6 Means of Monitoring -- 11.7 Summary -- References -- Bibliography -- Chapter 12 Dense Phase CO2 Corrosion -- 12.1 Background -- 12.2 CO2 Stream Composition -- 12.3 Corrosion in the Presence of Aqueous Phases -- 12.3.1 Pure CO2 and Water -- 12.3.2 Impurities and Formation of Corrosive Phases -- 12.4 Means of Corrosion Prediction -- 12.5 Method of Corrosion Mitigation -- 12.5.1 Normal Operation -- 12.5.2 Transport of Wet CO2 -- 12.5.3 Accidental Ingress of Water -- 12.5.4 Depressurisation -- 12.5.5 Downhole Corrosion -- 12.6 Summary -- References -- Chapter 13 Corrosion Under Insulation (CUI) -- 13.1 Historical Context -- 13.1.1 Key Features -- 13.2 Key Parameters Affecting CUI -- 13.2.1 Water -- 13.2.2 Contaminants -- 13.2.3 Primary CUI Temperature Ranges -- 13.2.4 The Effect of Temperature on CUI -- 13.2.5 The Effect of Humidity and the Dew Point: Sweating Corrosion -- 13.2.6 The Effect of Insulation Type on CUI -- 13.2.7 The Insulation System -- 13.3 CUI Prevention Methods -- 13.3.1 Protective Coatings -- 13.3.2 Organic Coatings for Carbon Steel Components -- 13.3.3 Thermally Spray Aluminium (TSA) -- 13.4 CUI Mitigation Strategy -- 13.4.1 Stainless Steel for Small Diameter Piping -- 13.4.2 Aluminium Foil Wrapping -- 13.4.3 Remove Unnecessary Insulation: Personnel Protection Cages -- 13.5 CUI Inspection -- 13.6 NDE/NDT Techniques to Detect CUI -- 13.7 Summary -- References -- Chapter 14 Metallic Materials Optimisation Routes.
14.1 Background.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgement -- Chapter 1 Introduction -- 1.1 Scope and Objectives -- 1.1.1 Contents of the Book -- 1.2 The Impact of Corrosion -- 1.2.1 The Overall Financial Impact -- 1.3 Principal Types of Corrosion in Hydrocarbon Production -- 1.3.1 Corrosion Threats -- 1.4 The Way Ahead: Positive Corrosion -- 1.5 Summary -- Note -- References -- Bibliography -- Chapter 2 Carbon and Low Alloy Steels (CLASs) -- 2.1 Steel Products -- 2.1.1 Structural Services -- 2.1.2 Pressure Containment -- 2.2 Development of Mechanical Properties -- 2.2.1 Heat Treatment -- 2.2.1.1 Normalising -- 2.2.1.2 Quenched and Tempering -- 2.2.1.3 Mechanical Working -- 2.2.2 Industrial Processes -- 2.3 Strengthening Mechanisms -- 2.3.1 Solid Solution Strengthening -- 2.3.2 Grain Refinement -- 2.3.3 Mechanical Working -- 2.3.4 Dispersion Strengthening -- 2.4 Hardenability -- 2.5 Weldability -- 2.6 Line Pipe Steels -- 2.7 Well Completion Downhole Tubulars -- 2.8 Internally Clad Materials -- 2.9 Summary -- Notes -- Reference -- Bibliography -- API/ISO Specifications -- ASME Standard -- Further Reading -- Chapter 3 Corrosion-Resistant Alloys (CRAs) -- 3.1 Background -- 3.2 Alloying Elements, Microstructures, and their Significance for Corrosion Performance -- 3.2.1 Alloying Elements -- 3.2.2 Improving Corrosion Resistance -- 3.2.3 Pitting Resistance Equivalent Number (PREN) -- 3.2.4 The Schaeffler Diagram and its Application -- 3.2.4.1 Nickel and Chromium Equivalents -- 3.3 Common Types/Grades of CRA Used in the Hydrocarbon Production Systems -- 3.3.1 Nominal Compositions -- 3.3.2 Mechanical Properties and Strengthening Methods -- 3.3.3 Yield Strength -- 3.4 Important Metallurgical Aspects of CRAs -- 3.4.1 Martensitic and Super Martensitic Stainless Steels (MSSs and SMSSs).

3.4.2 Duplex and Super Duplex Stainless Steels (DSSs and SDSSs) -- 3.4.3 Austenitic Stainless Steels (SSs) -- 3.4.4 Austenitic Fe- and Ni-Based Alloys -- 3.4.5 Titanium Alloys -- 3.5 Limits of Application -- 3.6 Selection Criteria -- 3.6.1 Selection Criteria Check List -- 3.6.2 Application of CRAs -- 3.6.3 Notable Points to Consider for Well Completion -- 3.7 Future Demands and Requirements -- 3.8 Summary -- Note -- References -- Bibliography -- Specifications -- Further Reading -- Chapter 4 Water Chemistry -- 4.1 Sources of Water -- 4.2 Water Chemistry -- 4.3 Other Impacts on Corrosivity -- 4.3.1 Mineral Scale -- 4.3.2 Bacterial Analyses -- 4.3.3 Iron Sulphide -- 4.3.4 Other Chemicals -- 4.4 Water Sampling Locations and Analysis Techniques -- 4.4.1 Sampling -- 4.4.2 Interpretation of Results -- 4.4.3 Monitoring Corrosion Management Strategies -- 4.5 Influential Parameters in System Corrosivity -- 4.6 Summary -- Notes -- References -- Bibliography -- Standards -- Chapter 5 Internal Metal Loss Corrosion Threats -- 5.1 CO2 Metal Loss Corrosion -- 5.1.1 The Mechanism -- 5.1.2 Types of Damage -- 5.1.2.1 Pitting -- 5.1.2.2 Mesa-Type Attack -- 5.1.2.3 Flow-Induced Localised Corrosion -- 5.2 Key Influential Factors -- 5.2.1 Notable Parameters -- 5.2.1.1 The In-Situ pH -- 5.2.1.2 The Effect of Organic Acid -- 5.3 Metal Loss CO2 Corrosion Prediction -- 5.3.1 Industry Practice -- 5.4 Metal Loss Corrosion in Mixed H2S/CO2 Containing Streams -- 5.4.1 Assessment Methods -- 5.5 Summary -- References -- Bibliography -- Chapter 6 Environmental Cracking (EC) -- 6.1 Environmental Cracking Threat in Steels -- 6.2 EC Associated with Hydrogen Sulphide -- 6.2.1 Corrosion Implications and Mechanism -- 6.2.2 Types of H2S Corrosion Threat -- 6.2.3 Categories, Types, Manifestation, and Mitigation Measures of H2S EC Threats -- 6.2.3.1 Sulphide Stress Cracking (SSC).

6.2.3.2 Hydrogen Internal Pressure Effects -- 6.2.3.3 Chloride Stress Corrosion Cracking (Cl-SCC) -- 6.2.3.4 Cracking in Related Environments -- 6.2.3.5 Operating Temperatures -- 6.3 Current Industry Practices -- 6.4 ISO 15156 -- 6.4.1 Part 1 -- 6.4.2 Part 2 -- 6.4.2.1 Severity of Operating Conditions for CLASs -- 6.4.2.2 Key Governing Criteria -- 6.4.3 Part 3 -- 6.5 Summary -- Notes -- Bibliography -- Chapter 7 Corrosion in Injection Systems -- 7.1 The Intent -- 7.2 Injection Systems -- 7.2.1 Treated Water -- 7.3 Water Treatment Methods -- 7.3.1 Mechanical Treatment -- 7.3.2 Chemical Treatments -- 7.3.2.1 Oxygen Removal -- 7.3.2.2 Injectivity Problems and Drag Reduction -- 7.3.2.3 Coagulants and Filter Aids -- 7.3.2.4 Bacterial Growth and Proliferation -- 7.3.2.5 Antifoam -- 7.4 Water Corrosivity -- 7.4.1 Water Quality -- 7.5 Means of Corrosion Prediction -- 7.5.1 Oldfield and Todd -- 7.5.2 Berger and Hau -- 7.5.3 The Appropriate Model -- 7.6 Materials Options -- 7.6.1 Tubing -- 7.6.1.1 CLAS -- 7.6.1.2 Low Cr-Containing Steels -- 7.6.1.3 Plastic-Coated Tubulars -- 7.6.1.4 Glass Reinforced Epoxy-Lined CLAS Tubing -- 7.6.1.5 CRAs -- 7.6.2 Pipelines and Piping -- 7.6.2.1 Bare CLAS -- 7.6.2.2 Internally Lined CLAS -- 7.6.2.3 CRAs -- 7.7 Supplementary Notes -- 7.8 Hydrotesting -- 7.9 Summary -- Note -- References -- Bibliography -- Chapter 8 Corrosion Mitigation by the Use of Inhibitor Chemicals -- 8.1 Inhibitor Characteristics -- 8.1.1 Key Benefits -- 8.1.2 Inhibitor Formulation -- 8.1.3 Inhibitor Species and Functionality -- 8.1.3.1 Functionality -- 8.1.4 Inhibitor Performance -- 8.1.4.1 The Effect of Fluid Flow -- 8.1.5 Environmental Acceptance -- 8.2 Inhibitor Testing and Application -- 8.2.1 Operating Conditions -- 8.2.2 Inhibitor Testing/Selection -- 8.2.2.1 The Media -- 8.2.2.2 Appropriate Tests -- 8.3 Inhibitor Application/Deployment.

8.3.1 Continuous Injection -- 8.3.1.1 Inhibitor Availability -- 8.3.2 Field Evaluation -- 8.3.3 Wet Gas Lines -- 8.3.4 Downhole Inhibition -- 8.3.4.1 Batch Treatment -- 8.4 Summary -- Note -- References -- Chapter 9 Coating Systems -- 9.1 External Pipeline Coatings -- 9.1.1 Fusion-Bonded Epoxy (FBE) Coating -- 9.1.2 Polyolefin Coatings -- 9.1.3 Field Joint Coatings -- 9.2 Internal Coating and Lining -- 9.2.1 Plastic-Coated Tubular (PCT) -- 9.2.2 Glass Reinforced Epoxy (GRE) Lined CLAS Tubing -- 9.2.3 Internal Coating of Tanks and Vessels -- 9.3 External Painting of Structures -- 9.3.1 Offshore Structures -- 9.4 Summary -- References -- Bibliography -- Chapter 10 Corrosion Trending -- 10.1 The Purpose of Corrosion Trending -- 10.2 Corrosion Monitoring -- 10.2.1 Corrosion Rate Monitoring -- 10.2.2 Weight Loss Coupons -- 10.2.3 Electrical Resistance (ER) Probes -- 10.2.4 Electrochemical Methods -- 10.2.5 Locating Internal Corrosion Monitoring Devices -- 10.2.6 Erosion Rate Monitoring -- 10.2.7 Access Fittings -- 10.2.8 Cost Considerations -- 10.2.9 Safety Considerations -- 10.3 Corrosion Barrier Monitoring -- 10.4 Collection and Analysis of Real-Time Monitoring Data -- 10.5 Downhole Corrosion Monitoring -- 10.6 Inspection Techniques -- 10.6.1 Equipment Portability -- 10.6.2 Visualising Inspection Data -- 10.7 Intelligent Pigging -- 10.8 Future Considerations -- 10.9 Summary -- References -- Bibliography -- Specifications -- Chapter 11 Microbiologically Influenced Corrosion (MIC) -- 11.1 Main Features -- 11.2 The Primary Causes -- 11.2.1 Summary of Key Parameters -- 11.3 The Motive for Promotion of Corrosion by Micro-organisms -- 11.3.1 The Corrosion Process -- 11.3.2 Microbial Activity Inside the Biofilms -- 11.3.3 Bridging Surface to Biofilm -- 11.3.4 Summary Mechanism -- 11.4 Most Susceptible Locations and Conditions.

11.4.1 Most MIC-Prone Environments and Facilities -- 11.4.2 Least MIC-Prone Environments and Facilities -- 11.4.3 Uncertain Limits and Conditions of Occurrence -- 11.4.4 Brief Overview -- 11.4.5 The Anticipated Damage Rate -- 11.5 Potential Prevention Measures -- 11.5.1 Biocide Treatments -- 11.5.2 Periodic Pigging -- 11.5.3 Inhibitor Treatments -- 11.5.4 Cleanliness -- 11.5.5 Cathodic Protection and Coatings -- 11.6 Means of Monitoring -- 11.7 Summary -- References -- Bibliography -- Chapter 12 Dense Phase CO2 Corrosion -- 12.1 Background -- 12.2 CO2 Stream Composition -- 12.3 Corrosion in the Presence of Aqueous Phases -- 12.3.1 Pure CO2 and Water -- 12.3.2 Impurities and Formation of Corrosive Phases -- 12.4 Means of Corrosion Prediction -- 12.5 Method of Corrosion Mitigation -- 12.5.1 Normal Operation -- 12.5.2 Transport of Wet CO2 -- 12.5.3 Accidental Ingress of Water -- 12.5.4 Depressurisation -- 12.5.5 Downhole Corrosion -- 12.6 Summary -- References -- Chapter 13 Corrosion Under Insulation (CUI) -- 13.1 Historical Context -- 13.1.1 Key Features -- 13.2 Key Parameters Affecting CUI -- 13.2.1 Water -- 13.2.2 Contaminants -- 13.2.3 Primary CUI Temperature Ranges -- 13.2.4 The Effect of Temperature on CUI -- 13.2.5 The Effect of Humidity and the Dew Point: Sweating Corrosion -- 13.2.6 The Effect of Insulation Type on CUI -- 13.2.7 The Insulation System -- 13.3 CUI Prevention Methods -- 13.3.1 Protective Coatings -- 13.3.2 Organic Coatings for Carbon Steel Components -- 13.3.3 Thermally Spray Aluminium (TSA) -- 13.4 CUI Mitigation Strategy -- 13.4.1 Stainless Steel for Small Diameter Piping -- 13.4.2 Aluminium Foil Wrapping -- 13.4.3 Remove Unnecessary Insulation: Personnel Protection Cages -- 13.5 CUI Inspection -- 13.6 NDE/NDT Techniques to Detect CUI -- 13.7 Summary -- References -- Chapter 14 Metallic Materials Optimisation Routes.

14.1 Background.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.