Design Optimization of Fluid Machinery : Applying Computational Fluid Dynamics and Numerical Optimization.
Material type:
- text
- computer
- online resource
- 9781119188322
- 620.1/064
- TA357.5.D37 .K56 2019
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Introduction -- 1.2 Fluid Machinery: Classification and Characteristics -- 1.3 Analysis of Fluid Machinery -- 1.4 Design of Fluid Machinery -- 1.4.1 Design Requirements -- 1.4.2 Determination of Meanline Parameters -- 1.4.3 Meanline Analysis -- 1.4.4 3D Blade Design -- 1.4.5 Quasi 3D Through‐Flow Analysis -- 1.4.6 Full 3D Flow Analysis -- 1.4.7 Design Optimization -- 1.5 Design Optimization of Turbomachinery -- References -- Chapter 2 Fluid Mechanics and Computational Fluid Dynamics -- 2.1 Basic Fluid Mechanics -- 2.1.1 Introduction -- 2.1.2 Classification of Fluid Flow -- 2.1.2.1 Based on Viscosity -- 2.1.2.2 Based on Compressibility -- 2.1.2.3 Based on Flow Speed (Mach Number) -- 2.1.2.4 Based on Flow Regime -- 2.1.2.5 Based on Number of Phases -- 2.1.3 One‐, Two‐, and Three‐Dimensional Flows -- 2.1.3.1 One‐Dimensional Flow -- 2.1.3.2 Two‐ and Three‐Dimensional Flow -- 2.1.4 External Fluid Flow -- 2.1.5 The Boundary Layer -- 2.1.5.1 Transition from Laminar to Turbulent Flow -- 2.2 Computational Fluid Dynamics (CFD) -- 2.2.1 CFD and its Application in Turbomachinery -- 2.2.1.1 Advantages of Using CFD -- 2.2.1.2 Limitations of CFD in Turbomachinery -- 2.2.2 Basic Steps Involved in CFD Analysis -- 2.2.2.1 Problem Statement -- 2.2.2.2 Mathematical Model -- 2.2.3 Governing Equations -- 2.2.3.1 Mass Conservation -- 2.2.3.2 Momentum Conservation -- 2.2.3.3 Energy Conservation -- 2.2.4 Turbulence Modeling -- 2.2.4.1 What is Turbulence? -- 2.2.4.2 Need for Turbulence Modeling -- 2.2.4.3 Reynolds‐Averaged Navier-Stokes Equations -- 2.2.4.4 Turbulence Closure Models -- 2.2.4.5 Large Eddy Simulation (LES) -- 2.2.4.6 Direct Numerical Simulation (DNS) -- 2.2.5 Boundary Conditions -- 2.2.5.1 Inlet/Outlet Boundary Conditions -- 2.2.5.2 Wall Boundary Conditions.
2.2.5.3 Periodic/Cyclic Boundary Conditions -- 2.2.5.4 Symmetry Boundary Conditions -- 2.2.6 Moving Reference Frame (MRF) -- 2.2.7 Verification and Validation -- 2.2.8 Commercial CFD Software -- 2.2.9 Open Source Codes -- 2.2.9.1 OpenFOAM -- References -- Chapter 3 Optimization Methodology -- 3.1 Introduction -- 3.1.1 Engineering Optimization Definition -- 3.1.2 Design Space -- 3.1.3 Design Variables and Objectives -- 3.1.4 Optimization Procedure -- 3.1.5 Search Algorithm -- 3.2 Multi‐Objective Optimization (MOO) -- 3.2.1 Weighted Sum Approach -- 3.2.2 Pareto‐Optimal Front -- 3.3 Constrained, Unconstrained, and Discrete Optimization -- 3.3.1 Constrained Optimization -- 3.3.2 Unconstrained Optimization -- 3.3.3 Discrete Optimization -- 3.4 Surrogate Modeling -- 3.4.1 Overview -- 3.4.2 Optimization Procedure -- 3.4.3 Surrogate Modeling Approach -- 3.4.3.1 Response Surface Approximation (RSA) Model -- 3.4.3.2 Artificial Neural Network (ANN) Model -- 3.4.3.3 Kriging Model (KRG) Model -- 3.4.3.4 PRESS‐Based‐Averaging (PBA) Model -- 3.4.3.5 Simple Average (SA) Model -- 3.5 Error Estimation -- 3.5.1 General Errors When Simulating and Optimizing a Turbomachinery System -- 3.5.2 Error Estimation in Surrogate Modeling -- 3.5.3 Sensitivity Analysis -- 3.5.3.1 Number of Variables and Performance Improvement -- 3.5.3.2 Example of Sensitivity Analysis -- 3.6 Sampling Technique -- 3.6.1 Sampling -- 3.6.2 Sample Size -- 3.6.3 Design Space -- 3.6.4 Dimensionality Curse -- 3.6.5 Design of Experiments (DOE) -- 3.6.6 Full Factorial Design -- 3.6.7 Latin Hypercube Sampling (LHS) -- 3.7 Optimizers -- 3.8 Multidisciplinary Design Optimization -- 3.8.1 What is Multidisciplinary Optimization? -- 3.8.2 Gradient‐Based Methods -- 3.8.3 Non‐Gradient‐Based Methods -- 3.8.4 Recent MDO Methods -- 3.9 Inverse Design -- 3.9.1 Inverse Design versus Direct Design.
3.9.2 Direct Design Optimization with CFD -- 3.9.3 Inverse Design Optimization with CFD -- 3.10 Automated Optimization -- 3.10.1 Coupling Method with Adjoint CFD -- 3.10.2 Case Studies -- 3.10.2.1 CFD‐Based Design Automated Design Optimization for Hydro Turbines -- 3.10.2.2 AO with OPAL++ -- 3.10.2.3 PADRAM: Parametric Design and Rapid Meshing System for Turbomachinery Optimization -- 3.10.2.4 Problems of AO -- 3.11 Conclusions -- References -- Chapter 4 Optimization of Industrial Fluid Machinery -- 4.1 Pumps -- 4.1.1 Centrifugal, Mixed‐Flow, and Axial‐Flow Pumps -- 4.1.1.1 Centrifugal (or Radial) Pumps -- 4.1.1.2 Mixed‐Flow and Axial‐Flow Pumps -- 4.1.2 Parametric Shape Models and Flow Solvers for Pump Optimization -- 4.1.2.1 1D Models -- 4.1.2.2 2D Models -- 4.1.2.3 3D Models -- 4.2 Compressors and Turbines -- 4.2.1 Axial, Radial, Multistage Compressors -- 4.2.2 Parametric Shape Models and Flow Solvers for Axial Compressor Optimization -- 4.2.2.1 1D Models -- 4.2.2.2 2D Models -- 4.2.2.3 Advanced Throughflow Design Techniques (2D) -- 4.2.2.4 Streamline Curvature Methods -- 4.2.2.5 Advanced Cascade Design Techniques (2D/Quasi‐3D) -- 4.2.2.6 Geometry Definition and Parameterization -- 4.2.2.7 Flow Solvers -- 4.2.2.8 3D Methods -- 4.2.3 Radial Compressor Optimization -- 4.2.3.1 3D Models -- 4.2.3.2 CFD Analysis -- 4.2.3.3 Multi‐Objective Optimization Problem and Results -- 4.2.4 Turbines -- 4.2.4.1 Axial‐Flow Turbines -- 4.2.4.2 Outflow and Inflow Turbines -- 4.2.4.3 Axial 1D -- 4.2.4.4 Case Study: Multi‐Point Optimization of an Axial Turbine Stage -- 4.2.4.5 Axial 2D -- 4.2.4.6 CFD Models: Implementation and Validation -- 4.2.4.7 Case Study: Description, Geometry Parametrization, and Meshing -- 4.2.4.8 Results -- 4.2.4.9 RSM -- 4.2.4.10 SQP -- 4.3 Fans -- 4.3.1 Centrifugal, Axial‐Flow, Mixed‐Flow, and Cross‐Flow Fans -- 4.3.1.1 Axial‐Flow Fans.
4.3.1.2 Centrifugal Fans -- 4.3.1.3 Mixed‐Flow Fans -- 4.3.1.4 Cross‐Flow Fans -- 4.3.2 Fan Pressure, Efficiency, and Laws -- 4.3.3 Aerodynamic Analysis of Fans -- 4.3.3.1 Axial‐Flow Fans -- 4.3.3.2 Centrifugal Fans -- 4.3.4 Optimization Problems and Algorithms Used for Fan Optimization -- 4.3.4.1 Axial‐Flow Fans -- 4.3.4.2 Axial‐Flow Fans -- 4.3.4.3 Centrifugal Fans -- 4.4 Hydraulic Turbines -- 4.4.1 Introduction -- 4.4.2 Cavitation in Hydraulic Turbines -- 4.4.3 Analysis of Hydraulic Turbines -- 4.4.3.1 Francis Turbines -- 4.4.3.2 Kaplan Turbines -- 4.4.3.3 Pump‐Turbines -- 4.4.4 Optimization of Hydraulic Turbines -- 4.4.4.1 Kaplan Turbines -- 4.4.4.2 Francis Turbines -- 4.4.4.3 Draft Tubes and Others -- 4.4.4.4 Pump‐Turbines -- 4.5 Others -- 4.5.1 Regenerative Blowers -- 4.5.2 Others -- References -- Chapter 5 Optimization of Fluid Machinery for Renewable Energy Systems -- 5.1 Wind Energy -- 5.1.1 Optimization of Horizontal‐Axis Wind Turbines -- 5.1.2 Blade Element Methods -- 5.1.3 Turbine Parameterization -- 5.1.4 Strategies for Rotor Optimization -- 5.2 Ocean Energy -- 5.2.1 Temperature Gradients -- 5.2.2 Tides and Tidal Currents -- 5.2.3 Salinity Gradients -- 5.2.4 Waves -- 5.3 Energy Extraction from Ocean Waves -- 5.4 Oscillating Water Column (OWC) -- 5.4.1 Fixed‐Structure OWC -- 5.4.2 Floating‐Structure OWC -- 5.5 Classification of Turbines -- 5.5.1 Wells Turbine -- 5.5.2 Impulse Turbine -- 5.6 Optimization of Air Turbines -- References -- Nomenclature -- Index -- EULA.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.