Tuning Biological Nutrient Removal Plants.
Material type:
- text
- computer
- online resource
- 9781780404837
- TD758.5.N88.H37 2013
Cover -- Copyright -- Contents -- About the Authors -- Acknowledgements -- Preface -- Chapter 1: What is tuning? -- Chapter 2: Influent and effluent characteristics -- 2.1 The Catchment -- 2.2 Flow Characteristics -- 2.3 Mass Loading Characteristics -- 2.3.1 Connected population -- 2.3.2 Flow -- 2.3.3 COD -- 2.3.4 SS -- 2.3.5 pH and alkalinity -- 2.3.6 Dissolved sulfide -- 2.3.7 TDS or conductivity -- 2.3.8 Pathogens -- 2.3.9 Load ratios -- 2.3.10 COD/BOD5 -- 2.3.11 Nutrient ratios -- 2.3.12 Total COD fractions -- 2.3.13 Soluble unbiodegradable organic N -- 2.3.14 Nitrifier maximum specific growth rate -- 2.3.15 Temperature -- 2.3.16 Energy content -- 2.3.17 Other sewage components -- 2.4 Sewer Transformations -- 2.5 Effect of Primary Treatment -- 2.6 Effluent Characteristics -- Chapter 3: Biological nutrient removal - process fundamentals -- 3.1 The Basic Process -- 3.2 Kinetics of Biological Processes -- 3.2.1 Substrate utilisation -- 3.2.2 Substrate concentration -- 3.3 Solids Retention Time -- 3.3.1 Definition -- 3.3.2 Calculation -- 3.4 Carbon Removal -- 3.4.1 Effect of SRT -- 3.4.2 Loading conditions -- 3.4.3 F:M ratio -- 3.4.4 Mixed liquor suspended solids -- 3.4.5 Nutrient requirements -- 3.4.6 Carbonaceous oxygen demand -- 3.5 Nitrogen Removal -- 3.5.1 The nitrogen cycle -- 3.5.2 Nitrification -- 3.5.3 Denitrification -- 3.5.4 Simultaneous nitrification and denitrification -- 3.5.5 Total process oxygen demand -- 3.6 Phosphorus Removal -- 3.6.1 Mechanisms -- 3.6.2 Process characteristics -- 3.6.3 Adverse factors -- 3.7 Supplementary Chemical Dosing -- 3.7.1 Phosphorus removal -- 3.7.2 Nitrogen removal -- 3.7.3 Other effects -- 3.8 Alkalinity and pH -- 3.8.1 Chemistry -- 3.8.2 Process behaviour -- 3.9 Rules of Thumb -- Chapter 4: Sludge settleability -- 4.1 Characterising Settleability -- 4.2 Settling Rates.
4.3 Factors Affecting Settleability -- 4.3.1 Non-BNR activated sludge processes -- 4.3.2 BNR processes -- 4.4 Effect of SVI on Effluent Quality -- 4.5 Foaming -- Chapter 5: BNR flowsheets -- 5.1 Nitrogen Removal -- 5.1.1 Modified Ludzack-Ettinger (MLE) -- 5.1.2 Bardenpho -- 5.2 Phosphorus Removal -- 5.2.1 Phoredox -- 5.3 Nitrogen and Phosphorus Removal -- 5.3.1 Modified Bardenpho -- 5.3.2 Johannesburg (JHB) -- 5.3.3 University of Cape Town (UCT) -- 5.3.4 Modified UCT (MUCT) -- 5.3.5 Westbank -- 5.3.6 Membrane Bioreactor (MBR) -- Chapter 6: Reactors -- 6.1 Mixing -- 6.1.1 Mixing regime -- 6.1.2 Mixing intensity -- 6.2 Aeration -- 6.2.1 Oxygen transfer rate -- 6.2.2 Oxygen transfer efficiency -- 6.2.3 Carbon dioxide stripping -- 6.3 Compartmentalised Reactors -- 6.3.1 Description -- 6.3.2 Process characteristics -- 6.3.3 Operating principles -- 6.4 Oxidation Ditches -- 6.4.1 Description -- 6.4.2 Process characteristics -- 6.4.3 Hydraulics -- 6.4.4 Mechanical aerator characteristics -- 6.4.5 Operating principles -- 6.5 Membrane Bioreactors -- 6.5.1 Description -- 6.5.2 Process characteristics -- 6.5.3 Operating principles -- 6.6 Sequencing Batch Reactors -- 6.6.1 Description -- 6.6.2 Process characteristics -- 6.6.3 Operating principles -- Chapter 7: Secondary clarifiers -- 7.1 Description -- 7.2 Mass Balances -- 7.3 Operating Diagrams -- 7.4 Effluent Quality -- 7.4.1 Factors affecting effluent SS -- 7.4.2 Other effects of clarifiers on effluent quality -- 7.5 Clarifier Stress Testing -- Chapter 8: Sludge processes -- 8.1 Overview -- 8.2 Aerobic Digestion -- 8.2.1 Stabilisation performance -- 8.2.2 Operating characteristics -- 8.2.3 Operating examples -- 8.2.4 Operating principles -- 8.3 Sludge Dewatering -- 8.3.1 Mass balances -- 8.3.2 Belt filter press -- 8.3.3 Centrifuge -- Chapter 9: Plant characteristics -- 9.1 Mass Balances.
9.2 Operational Process Capacity -- 9.2.1 Bottlenecks -- 9.2.2 Failure curves -- 9.3 Capacity Envelopes -- 9.3.1 Continuous flow process -- 9.3.2 SBR process -- 9.4 Energy Consumption -- 9.4.1 Water cycle -- 9.4.2 Plant energy balance -- 9.4.3 Energy models -- 9.4.4 Tuning -- Chapter 10: Process control -- 10.1 The Role of Control and Automation -- 10.2 Disturbances -- 10.3 Control Priorities -- 10.3.1 The system -- 10.3.2 The importance of dynamics -- 10.3.3 Modelling -- 10.4 Feedback Control -- 10.4.1 Open and closed loop control -- 10.4.2 Low level control -- 10.4.3 Integral action -- 10.4.4 Derivative action -- 10.4.5 Computer realisation of the PID controller -- 10.4.6 When is PID control appropriate? -- 10.4.7 Controller tuning -- 10.4.8 Manual PI tuning -- 10.4.9 Ziegler-Nichols frequency response method -- 10.4.10 Autotuning -- 10.5 Instrumentation and Monitoring -- 10.5.1 Instruments -- 10.5.2 Estimating the oxygen uptake rate -- 10.6 Pumping -- 10.6.1 Pump characteristics -- 10.6.2 Relationship between flow rate and power -- 10.7 Essential Control Loops -- 10.7.1 Dissolved oxygen control -- 10.7.2 Ammonia-Based DO control -- 10.7.3 Recycle flow controls -- 10.7.4 Chemical precipitation -- 10.7.5 Anaerobic digestion process control -- 10.8 Minimising Operating Cost -- 10.8.1 Approaches -- 10.8.2 The human factor -- 10.9 Concluding Remarks -- Chapter 11: Evolutionary operation -- 11.1 Learning -- 11.2 Application to Sewage Treatment Plants -- 11.2.1 Plant improvement strategies -- 11.2.2 Learning curves -- 11.2.3 Startup phase -- 11.3 Long-Term Improvement -- 11.3.1 Potential -- 11.3.2 Tuning -- 11.3.3 Stress testing -- 11.3.4 Debottlenecking -- 11.3.5 Costs -- 11.4 EVOP Procedures -- 11.4.1 Method -- 11.4.2 Trend plots -- 11.4.3 General principles -- 11.5 Faux EVOP -- Appendix 1: A note on the statistics of variability -- Average and Median.
Percentiles -- Application -- Appendix 2: Chemicals: useful properties -- Appendix 3: Abbreviations -- References -- Index.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.