ORPP logo
Image from Google Jackets

Heat Eisenstein series on SL[subscript n](C).

By: Contributor(s): Material type: TextTextSeries: Memoirs of the American Mathematical SocietyPublisher: Providence : American Mathematical Society, 2009Copyright date: ©2009Edition: 1st edDescription: 1 online resource (146 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470405601
Subject(s): Genre/Form: Additional physical formats: Print version:: Heat Eisenstein series on SL[subscript n](C)DDC classification:
  • 515/.353
LOC classification:
  • QA377 -- .J657 2009eb
Online resources:
Contents:
Intro -- Contents -- Acknowledgements -- Introduction -- Notation and Terminology -- Chapter 1. Estimates on SL[sub(n)] Parabolics -- 1. The hermitian norm on SL[sub(n)] and Siegel sets -- 2. Volume and lattice point estimates -- 3. Estimates of A-projections -- 4. Standard reduced parabolics -- 5. Characters on parabolics -- 6. Estimates of Ap-projections -- 7. Parabolic integral formulas -- Chapter 2. Eisenstein Series -- 1. The character Eisenstein series -- 2. Twists of character Eisenstein series -- 3. Two-character Eisenstein series -- 4. The Gauss space -- 5. The parabolic Eisenstein integration formula -- Chapter 3. Adjointness and Inversion Relations -- 1. Adjointness formulas and F-cuspidality -- 2. Adjointness and initial conditions formulas -- 3. P-cuspidality and heat Eisenstein series -- 4. The family of anticuspidal operators J[sub(P,Γ,e,t)] -- Chapter 4. Applications of the Heat Equation -- 1. Parabolics and the (a, n)-characters -- 2. Direct image of Casimir on parabolics -- 3. The differential equation for E[sub(P,Γ,K)] and E[sup(#)][sub(P,K)] -- 4. Convolution of Tr[sub(Γ)](K[sub(X)]) and the Eisenstein series -- 5. The P-anticuspidal semigroup property -- 6. The P-anticuspidal operator J[sub(P,Γρp,)] and the conjectured spectral expansion -- 7. Onward -- Appendix. The Heat Kernel -- 1. Dodziuk's uniqueness theorem -- 2. The fundamental solution and the heat kernel -- 3. Properties of the heat kernel -- 4. Compact manifolds -- Bibliography -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- L -- M -- N -- O -- P -- R -- S -- T -- U -- V.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Acknowledgements -- Introduction -- Notation and Terminology -- Chapter 1. Estimates on SL[sub(n)] Parabolics -- 1. The hermitian norm on SL[sub(n)] and Siegel sets -- 2. Volume and lattice point estimates -- 3. Estimates of A-projections -- 4. Standard reduced parabolics -- 5. Characters on parabolics -- 6. Estimates of Ap-projections -- 7. Parabolic integral formulas -- Chapter 2. Eisenstein Series -- 1. The character Eisenstein series -- 2. Twists of character Eisenstein series -- 3. Two-character Eisenstein series -- 4. The Gauss space -- 5. The parabolic Eisenstein integration formula -- Chapter 3. Adjointness and Inversion Relations -- 1. Adjointness formulas and F-cuspidality -- 2. Adjointness and initial conditions formulas -- 3. P-cuspidality and heat Eisenstein series -- 4. The family of anticuspidal operators J[sub(P,Γ,e,t)] -- Chapter 4. Applications of the Heat Equation -- 1. Parabolics and the (a, n)-characters -- 2. Direct image of Casimir on parabolics -- 3. The differential equation for E[sub(P,Γ,K)] and E[sup(#)][sub(P,K)] -- 4. Convolution of Tr[sub(Γ)](K[sub(X)]) and the Eisenstein series -- 5. The P-anticuspidal semigroup property -- 6. The P-anticuspidal operator J[sub(P,Γρp,)] and the conjectured spectral expansion -- 7. Onward -- Appendix. The Heat Kernel -- 1. Dodziuk's uniqueness theorem -- 2. The fundamental solution and the heat kernel -- 3. Properties of the heat kernel -- 4. Compact manifolds -- Bibliography -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- L -- M -- N -- O -- P -- R -- S -- T -- U -- V.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.