ORPP logo
Image from Google Jackets

Minimal Surfaces in Riemannian Manifolds.

By: Contributor(s): Material type: TextTextSeries: Memoirs of the American Mathematical SocietyPublisher: Providence : American Mathematical Society, 1993Copyright date: ©1993Edition: 1st edDescription: 1 online resource (63 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470400729
Subject(s): Genre/Form: Additional physical formats: Print version:: Minimal Surfaces in Riemannian ManifoldsDDC classification:
  • 516.3/73
LOC classification:
  • QA644 -- .J5 1993eb
Online resources:
Contents:
Intro -- Contents -- Introduction -- 0. Preliminaries -- 0.1. Spaces of maps -- 0.2. Pseudo-gradient vector field, pseudo-gradient flow and deformation lemma -- 1. Compactness and regularity -- 1.1. Some inequalities -- 1.2. Compactness and regularity -- 2. A priori estimates -- 2.1. Statement of the estimate -- 2.2. Variation with respect to the conform al group -- 2.3. "Blow up" analysis -- 2.3a. "Blow up" analysis in the interior -- 2.3b. A uniqueness theorem -- 2.3c. "Blow up" analysis near the boundary -- 2.4. Establishing the main estimate -- 3. Conformality and deformation lemmas for E -- 3.1. Conformality -- 3.2. Perturbation method -- 4. Mountain-Pass-Solution -- 5. A minimax principle -- 5.1. A new index and its properties -- 5.2. Continuity and stronger continuity -- 5.3. Multiple solution theorem for minimal surfaces -- 5.4. An application to S[sup(n)] -- References.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Introduction -- 0. Preliminaries -- 0.1. Spaces of maps -- 0.2. Pseudo-gradient vector field, pseudo-gradient flow and deformation lemma -- 1. Compactness and regularity -- 1.1. Some inequalities -- 1.2. Compactness and regularity -- 2. A priori estimates -- 2.1. Statement of the estimate -- 2.2. Variation with respect to the conform al group -- 2.3. "Blow up" analysis -- 2.3a. "Blow up" analysis in the interior -- 2.3b. A uniqueness theorem -- 2.3c. "Blow up" analysis near the boundary -- 2.4. Establishing the main estimate -- 3. Conformality and deformation lemmas for E -- 3.1. Conformality -- 3.2. Perturbation method -- 4. Mountain-Pass-Solution -- 5. A minimax principle -- 5.1. A new index and its properties -- 5.2. Continuity and stronger continuity -- 5.3. Multiple solution theorem for minimal surfaces -- 5.4. An application to S[sup(n)] -- References.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.