ORPP logo
Image from Google Jackets

Singular Unitary Representations and Discrete Series for Indefinite Stiefel Manifolds U.

By: Material type: TextTextSeries: Memoirs of the American Mathematical SocietyPublisher: Providence : American Mathematical Society, 1992Copyright date: ©1992Edition: 1st edDescription: 1 online resource (117 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470408886
Subject(s): Genre/Form: Additional physical formats: Print version:: Singular Unitary Representations and Discrete Series for Indefinite Stiefel Manifolds UDDC classification:
  • 512/.55
LOC classification:
  • QA387 -- .K633 1992eb
Online resources:
Contents:
Intro -- Contents -- 0. Introduction -- 1. Notation -- 1. θ-stable parabolic subalgebra -- 2. good range, fair range -- 3. cohomological parabolic induction -- 4. results from Zuckerman and Vogan -- 5. results from Harish-Chandra and Oshima-Matsuki -- 2. Main results -- 1. G = Spfaq) -- 2. main theorem for G = Sp(p,q) -- 3. G = U(p,q) -- 4. main theorem for G = U(p,q) -- 5. G = SO0(p,q) -- 6. main theorem for G = SOo( p,q) -- 7. list and figures of various conditions on parameters -- 8. remarks -- 3. Further notations and preliminary results -- 1. Jantzen-Zuckerman's translation functor -- 2. induction by stages -- 3. definition of A (λ[omitted] λ') -- 4. A (λ[omitted] λ') and derived functor modules -- 5. some symbols -- 4. Some explicit formulas on K multiplicities -- 1. preliminaries -- 2. some alternating polynomials -- 3. result in quaternionic case -- 4. result in complex case -- 5. result in real case -- 6. some auxiliary lemmas -- 7. proof for quarternionic case -- 8. proof for complex case -- 9. proof for real case -- 5. An alternative proof of the sufficiency for R[sup(s)][sub(q)](Cλ)≠ 0 -- 1. theorem: sufficient condition for R[sup(s)][sub(q)](Cλ)≠ 0 -- 2. key lemmas -- 3. proof of the combinatorial part -- 6. Proof of irreducibility results -- 1. irreducibility in the fair range -- 2. twisted differential operators -- 3. theorem -- 4. irreducibility result -- 5. Vogan's idea on the translation principle for Ay(l:g) -- 6. notations about GL{nz,C) and Sp(n,C) -- 7. definition of Cλ -- 8. verification of (6.5.4)(a) -- 9. verification of (6.5.4)(b) -- 10. verification of (6.5.4)(c) -- 11. proof of Corollary(6.4.1) -- 7. Proof of vanishing results outside the fair range -- 1. proof in complex case -- 2. vanishing result in quaternionic case -- 3. maximal parabolic case -- 4. general parabolic case -- 8. Proof of the inequivalence results.
1. quarternionic case -- 2. orthogonal case -- References.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- 0. Introduction -- 1. Notation -- 1. θ-stable parabolic subalgebra -- 2. good range, fair range -- 3. cohomological parabolic induction -- 4. results from Zuckerman and Vogan -- 5. results from Harish-Chandra and Oshima-Matsuki -- 2. Main results -- 1. G = Spfaq) -- 2. main theorem for G = Sp(p,q) -- 3. G = U(p,q) -- 4. main theorem for G = U(p,q) -- 5. G = SO0(p,q) -- 6. main theorem for G = SOo( p,q) -- 7. list and figures of various conditions on parameters -- 8. remarks -- 3. Further notations and preliminary results -- 1. Jantzen-Zuckerman's translation functor -- 2. induction by stages -- 3. definition of A (λ[omitted] λ') -- 4. A (λ[omitted] λ') and derived functor modules -- 5. some symbols -- 4. Some explicit formulas on K multiplicities -- 1. preliminaries -- 2. some alternating polynomials -- 3. result in quaternionic case -- 4. result in complex case -- 5. result in real case -- 6. some auxiliary lemmas -- 7. proof for quarternionic case -- 8. proof for complex case -- 9. proof for real case -- 5. An alternative proof of the sufficiency for R[sup(s)][sub(q)](Cλ)≠ 0 -- 1. theorem: sufficient condition for R[sup(s)][sub(q)](Cλ)≠ 0 -- 2. key lemmas -- 3. proof of the combinatorial part -- 6. Proof of irreducibility results -- 1. irreducibility in the fair range -- 2. twisted differential operators -- 3. theorem -- 4. irreducibility result -- 5. Vogan's idea on the translation principle for Ay(l:g) -- 6. notations about GL{nz,C) and Sp(n,C) -- 7. definition of Cλ -- 8. verification of (6.5.4)(a) -- 9. verification of (6.5.4)(b) -- 10. verification of (6.5.4)(c) -- 11. proof of Corollary(6.4.1) -- 7. Proof of vanishing results outside the fair range -- 1. proof in complex case -- 2. vanishing result in quaternionic case -- 3. maximal parabolic case -- 4. general parabolic case -- 8. Proof of the inequivalence results.

1. quarternionic case -- 2. orthogonal case -- References.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.