ORPP logo
Image from Google Jackets

Matroid Theory : AMS-IMS-SIAM Joint Summer Research Conference on Matroid Theory, July 2-6, 1995, University of Washington, Seattle.

By: Contributor(s): Material type: TextTextSeries: Contemporary MathematicsPublisher: Providence : American Mathematical Society, 1996Copyright date: ©1995Edition: 1st edDescription: 1 online resource (434 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780821877883
Subject(s): Genre/Form: Additional physical formats: Print version:: Matroid TheoryDDC classification:
  • 511/.6
LOC classification:
  • QA166.6 -- .A45 1995eb
Online resources:
Contents:
Intro -- Contents -- Preface -- Conference program -- List of participants -- Critical problems -- Structure theory and connectivity for matroids -- Some matroids from discrete applied geometry -- 1. Introduction -- 1.1 The broad themes -- -- 1.2 A pattern of matroids on graphs -- -- 1.3 Acknowledgments. -- Part 1: The Core Plane Matroids -- 2. The Plane Rigidity Matroid: Statics -- 3. The Plane Rigidity Matroid: Kinematics -- 4. Parallel Drawings in the Plane -- 5. The C01-Cofactor Matroid -- 6. Other 'Plane' Matroids -- 7. Summary of Plane Results -- Part II: Higher Dimensions -- 8. Parallel Scenes in Higher Dimensions -- 9. Rigidity of Frameworks in 3-space -- 10. The C12-Cofactor Matroid from Bivariate Splines -- 11. Higher Dimensions -- 12. d-Space Structures Which Work! -- Part III: Matroids for Geometric Homologies -- 13. Some Background -- 14. Simplicial Homology Matroids -- 15. Multivariate Cofactor Matroids -- 16. Skeletal Rigidity -- 17. Summary of Themes -- Appendix A. Matroids from Counts on Graphs and Hypergraphs -- A.1 The basic counts -- -- A.2 Some structure results from counts -- -- A.3 Hypermatroids from counts -- -- A.4 Counts on partitioned sets -- -- A.5 Variable counts on edge sets. -- References -- Oriented matroid pairs, theory and an electric application -- A min-max theorem using matroid separations -- A greedoid characteristic polynomial -- Monotactic matroids -- On binary matroids with a K3,3-minor -- Randomised approximation of the number of bases -- On representable matroids having neither U2,5-nor U3,5-minors -- Skeletal rigidity of p.1.-spheres -- The Coxeter matroids of Gelfand et al. -- Open problems.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Preface -- Conference program -- List of participants -- Critical problems -- Structure theory and connectivity for matroids -- Some matroids from discrete applied geometry -- 1. Introduction -- 1.1 The broad themes -- -- 1.2 A pattern of matroids on graphs -- -- 1.3 Acknowledgments. -- Part 1: The Core Plane Matroids -- 2. The Plane Rigidity Matroid: Statics -- 3. The Plane Rigidity Matroid: Kinematics -- 4. Parallel Drawings in the Plane -- 5. The C01-Cofactor Matroid -- 6. Other 'Plane' Matroids -- 7. Summary of Plane Results -- Part II: Higher Dimensions -- 8. Parallel Scenes in Higher Dimensions -- 9. Rigidity of Frameworks in 3-space -- 10. The C12-Cofactor Matroid from Bivariate Splines -- 11. Higher Dimensions -- 12. d-Space Structures Which Work! -- Part III: Matroids for Geometric Homologies -- 13. Some Background -- 14. Simplicial Homology Matroids -- 15. Multivariate Cofactor Matroids -- 16. Skeletal Rigidity -- 17. Summary of Themes -- Appendix A. Matroids from Counts on Graphs and Hypergraphs -- A.1 The basic counts -- -- A.2 Some structure results from counts -- -- A.3 Hypermatroids from counts -- -- A.4 Counts on partitioned sets -- -- A.5 Variable counts on edge sets. -- References -- Oriented matroid pairs, theory and an electric application -- A min-max theorem using matroid separations -- A greedoid characteristic polynomial -- Monotactic matroids -- On binary matroids with a K3,3-minor -- Randomised approximation of the number of bases -- On representable matroids having neither U2,5-nor U3,5-minors -- Skeletal rigidity of p.1.-spheres -- The Coxeter matroids of Gelfand et al. -- Open problems.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.