Representation Theory and Number Theory in Connection with the Local Langlands Conjecture.
Material type:
- text
- computer
- online resource
- 9780821876749
- 512/.74
- QA241 -- .R44 1989eb
Intro -- Contents -- Preface -- Participants -- The irreducible representation of the multiplicative group of a tame division algebra over a local field (following H. Koch and E.-W. Zink). -- Sequences of Eisenstein polynomials and arithmetic in local division algebras. -- Koch's classification of the primitive representations of a Galois group of a local field. -- On the numerical local Langlands conjecture. -- Ramification of Weil representations of local Galois groups. -- Representations of certain group extensions. -- Trace calulations. -- Root numbers - the tame case. -- Representations of locally profinite groups. -- The theorems of Bernstein and Zelevinskii. -- Principal orders and congruence Gauß sums. -- The functional equation є-factors -- Root numbers and the local Langlands conjecture. -- On the exceptional representations of GLN. -- Characters of representations of Dn. -- Matching and formal degrees for division algebras and GLn over a p-adic field. -- Tame representations and base change. -- Gauß sums and supercuspidal representations of GLn. -- Identitiés on degree two gamma factors. -- A conjecture on minimal K-types for GLn over a p-adic field. -- Preuve de la conjecture de Langlands locale numerique pour GL(n). -- References.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.