ORPP logo
Image from Google Jackets

Carbon Nanomaterials for Bioimaging, Bioanalysis, and Therapy.

By: Contributor(s): Material type: TextTextSeries: Nanocarbon Chemistry and Interfaces SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2019Copyright date: ©2019Edition: 1st edDescription: 1 online resource (410 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119373445
Subject(s): Genre/Form: Additional physical formats: Print version:: Carbon Nanomaterials for Bioimaging, Bioanalysis, and TherapyDDC classification:
  • 616.07/540284
LOC classification:
  • TA418.9.N35 .C373 2019
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Series Preface -- Preface -- Part I Basics of Carbon Nanomaterials -- Chapter 1 Introduction to Carbon Structures -- 1.1 Carbon Age -- 1.2 Classification -- 1.3 Fullerene -- 1.4 Carbon Nanotubes -- 1.4.1 Structure -- 1.4.2 Electronics -- 1.5 Graphene -- 1.5.1 Structure -- 1.5.2 Electronics -- 1.6 Nanodiamonds and Carbon Dots -- Acknowledgment -- References -- Chapter 2 Using Polymers to Enhance the Carbon Nanomaterial Biointerface -- 2.1 Introduction -- 2.2 Colloidal Stability of CNMs -- 2.3 Functionalization of CNMs with Polymers -- 2.3.1 Noncovalent Approaches -- 2.3.2 Covalent Approaches -- 2.4 Influence of Polymers on the Spectral Properties of CNMs -- 2.5 Functionalizing CNMs with Antifouling Polymers for Bioapplications -- 2.6 Functionalization of CNMs with Stimuli‐Responsive Polymers -- 2.6.1 Carbon Nanoparticles with Thermoresponsive Polymers -- 2.6.2 pH‐Responsive Carbon Nanoparticles -- 2.6.3 Redox‐Responsive Carbon Nanoparticles -- 2.6.4 Multi‐Responsive Carbon Nanoparticles -- 2.7 Functionalization of CNMs with Polymers for Delivery of Nucleic Acids -- 2.8 Outlook -- Acknowledgments -- References -- Chapter 3 Carbon Nanomaterials for Optical Bioimaging and Phototherapy -- 3.1 Introduction -- 3.2 Surface Functionalization of Carbon Nanomaterials -- 3.3 Carbon Nanomaterials for Optical Imaging -- 3.3.1 Intrinsic Fluorescence of Carbon Nanomaterials -- 3.3.2 Imaging Utilizing Intrinsic Fluorescence Features of Carbon Nanomaterials -- 3.3.3 Imaging with Fluorescently Labeled Carbon Nanomaterials -- 3.4 Carbon Nanomaterials for Phototherapies of Cancer -- 3.4.1 Photothermal Therapy -- 3.4.2 Photodynamic Therapy -- 3.5 Conclusions and Outlook -- References -- Part II Bioimaging and Bioanalysis.
Chapter 4 High‐Resolution and High‐Contrast Fluorescence Imaging with Carbon Nanomaterials for Preclinical and Clinical Applications -- 4.1 Introduction -- 4.2 Survey of Carbon Nanomaterials -- 4.2.1 Fluorescent Nanodiamonds -- 4.2.2 Carbon Nanotubes -- 4.2.3 Graphene -- 4.2.4 Carbon Nanodots -- 4.3 Fluorescent Properties of FNDs and SWCNTs -- 4.3.1 FNDs -- 4.3.2 SWCNTs -- 4.4 Survey of High‐Resolution and High‐Contrast Imaging -- 4.4.1 General Considerations for Eventual Human Use -- 4.4.2 General Considerations for Achieving High‐Resolution and High‐Contrast Imaging -- 4.4.2.1 Photoacoustic Imaging (PAI) -- 4.4.2.2 X‐ray Computed Tomographic (CT) Imaging -- 4.4.2.3 Magnetic Resonance Imaging (MRI) -- 4.4.2.4 Image Alignment and Drift Correction -- 4.4.3 Preclinical and Clinical Optical Imaging with CNMs -- 4.4.4 Optical Imaging in the Short‐Wavelength Window (~650-950 nm) -- 4.4.4.1 Optical Imaging Beyond the Diffraction Limit -- 4.4.4.2 Selective Modulation of Emission -- 4.4.4.3 Time‐Gated Fluorescence Lifetime Imaging -- 4.4.5 Optical Imaging in the Long‐Wavelength Window (~950-1400 nm) -- 4.5 Conclusions -- References -- Chapter 5 Carbon Nanomaterials for Deep‐Tissue Imaging in the NIR Spectral Window -- 5.1 Introduction -- 5.1.1 Transparent Optical Windows in Biological Tissue -- 5.1.2 Near‐Infrared Imaging Materials -- 5.2 Carbon Nanomaterials for NIR Imaging -- 5.2.1 Biocompatibility of CNMs -- 5.2.2 Fluorescence of CNMs Probes -- 5.2.3 Covalent and Noncovalent Functionalization -- 5.2.4 CNMs as Bioimaging Platforms -- 5.2.4.1 Fullerene -- 5.2.4.2 Carbon Nanotubes -- 5.2.4.3 Graphene Derivatives -- 5.2.4.4 Carbon Dots -- 5.2.4.5 Carbon Nano-onions -- 5.2.4.6 Nanodiamonds -- 5.3 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 6 Tracking Photoluminescent Carbon Nanomaterials in Biological Systems -- Chapter Summary.
6.1 Introduction -- 6.2 Tracking Cells in Organisms with Fluorescent Nanodiamonds -- 6.3 Monitoring Inter and Intra Cellular Dynamics with Fluorescent Nanodiamonds -- 6.4 Single‐Walled Carbon Nanotubes: A Near‐Infrared Optical Probe of the Nanoscale Extracellular Space in Live Brain Tissue -- 6.5 Conclusion -- References -- Chapter 7 Photoacoustic Imaging with Carbon Nanomaterials -- Chapter Summary -- 7.1 Introduction -- 7.2 Photoacoustic Imaging Systems -- 7.2.1 Photoacoustic Microscopy -- 7.2.2 Photoacoustic Computed Tomography -- 7.3 Photoacoustic Application of Carbon Nanomaterials -- 7.3.1 Carbon Nanomaterials for Photoacoustic Imaging Contrast Agents -- 7.3.2 Carbon Nanomaterials for Multimodal Photoacoustic Imaging -- 7.3.3 Carbon Nanomaterials for Photoacoustic Image‐Guided Therapy -- 7.3.4 Conclusions and Future Perspective -- Acknowledgments -- References -- Chapter 8 Carbon Nanomaterial Sensors for Cancer and Disease Diagnosis -- 8.1 Introduction -- 8.2 Detection of VOC by Using Gas/Vapor Sensors for Cancer and Disease Diagnosis -- 8.2.1 Carbon Nanodots (CNDs) and Graphene Quantum Dots (GQDs) for VOC Sensors -- 8.2.2 Carbon Nanotubes (CNTs) for VOC Sensors -- 8.2.3 Graphene for VOC Sensors -- 8.3 Detection of Biomarkers Using Biosensors for Cancer and Disease Diagnosis -- 8.3.1 Carbon Nanodot‐ and Graphene Quantum Dot‐Based Biosensors for Disease Biomarkers Detection -- 8.3.2 Carbon Nanotube‐Based Biosensors for Cancer Biomarker Detection -- 8.3.3 Carbon Nanotube‐Based Biosensors for Disease Biomarker Detection -- 8.3.4 Graphene‐Based Biosensors for Cancer Biomarker Detection -- 8.3.5 Graphene‐Based Biosensors for Disease Biomarker Detection -- 8.4 Conclusions and Perspectives -- Acknowledgments -- References -- Chapter 9 Recent Advances in Carbon Dots for Bioanalysis and the Future Perspectives -- 9.1 Introduction.
9.2 Fundamentals of CDs -- 9.2.1 Synthesis Approaches -- 9.2.2 Optical Properties -- 9.2.2.1 Absorbance and Photoluminescence (PL) -- 9.2.2.2 Quantum Yield (QY) -- 9.2.2.3 Photoluminescence Origins -- 9.2.2.4 Up‐Conversion Photoluminescence (UCPL) -- 9.2.2.5 Phosphorescence -- 9.2.3 Physical and Chemical Properties -- 9.2.4 Biosafety Assessments -- 9.3 Bioengineering of CDs for Bioanalysis -- 9.3.1 Functionalization Mechanism and Strategies -- 9.3.1.1 Chemical Functionalization -- 9.3.1.2 Doping -- 9.3.1.3 Coupling with Gold Nanoparticles -- 9.3.1.4 Fabrication onto Solid Polymeric Matrices -- 9.3.2 Biomolecules Grafted on CDs as Sensing Receptors -- 9.3.2.1 Deoxyribonucleic Acid (DNA) -- 9.3.2.2 Aptamers -- 9.3.2.3 Proteins/Peptides -- 9.3.2.4 Biopolymers -- 9.4 Bioanalysis Applications of CDs -- 9.4.1 Biosensing Mechanism/Transduction Schemes -- 9.4.1.1 Fluorescence -- 9.4.1.2 Chemiluminescence (CL) -- 9.4.1.3 Electrochemiluminescence (ECL) -- 9.4.1.4 Electrochemical -- 9.4.2 Uses of CDs in Bioanalysis -- 9.4.2.1 Heavy Metals/Elements -- 9.4.2.2 Reactive Oxygen/Nitrogen Species (ROS/RNS) -- 9.4.2.3 Oligonucleotides -- 9.4.2.4 Small Molecules/Pharmaceutical Drugs/Natural Compounds -- 9.4.2.5 Proteins -- 9.4.2.6 Enzyme Activities and Inhibitor Screening -- 9.4.2.7 pH -- 9.4.2.8 Temperature -- 9.4.3 Solid‐State Sensing for Point‐of‐Care Diagnostic Kits -- 9.4.4 Bioimaging/Real‐Time Monitoring -- 9.4.5 Theranostics -- 9.5 Future Perspectives -- 9.5.1 Better Understanding of PL Mechanisms -- 9.5.2 Establishment of Systematic Synthesis Protocol -- 9.5.3 QY Improvement and Spectral Expansion to Longer Wavelength -- 9.5.4 Sensitivity Improvement for Solid‐State Sensing -- 9.6 Conclusions -- References -- Part III Therapy -- Chapter 10 Functionalized Carbon Nanomaterials for Drug Delivery -- 10.1 Introduction.
10.2 Direct Fabrication of Graphene‐Based Composite with Photosensitizer for Cancer Phototherapy -- 10.2.1 Fabrication of Graphene‐Based Composite with Chlorin e6 (G‐Ce6) -- 10.2.2 Characterization of G‐Ce6 -- 10.2.3 In vitro Evaluation of G‐Ce6 for Cancer Phototherapy -- 10.3 Polyglycerol‐Functionalized Nanodiamond Conjugated with Platinum‐Based Drug for Cancer Chemotherapy -- 10.3.1 Synthesis of Polyglycerol‐Functionalized Nanodiamond Conjugated with Platinum‐Based Drug and Targeting Peptide -- 10.3.2 Characterization of Polyglycerol‐Functionalized Nanodiamond and the Derivatives -- 10.3.3 In vitro Evaluation of Polyglycerol‐Functionalized Nanodiamond Conjugated with Platinum‐Based Drug for Cancer Chemotherapy -- 10.4 Polyglycerol‐Functionalized Nanodiamond Hybridized with DNA for Gene Therapy -- 10.4.1 Synthesis and Characterization of Polyglycerol‐Functionalized Nanodiamond Conjugated with Basic Polypeptides -- 10.4.2 Characterization of Polyglycerol‐Functionalized Nanodiamond Hybridized with Plasmid DNA -- 10.5 Conclusions and Perspectives -- Acknowledgments -- References -- Chapter 11 Multifunctional Graphene‐Based Nanocomposites for Cancer Diagnosis and Therapy -- 11.1 Introduction -- 11.2 Multifunctional Graphene‐Based Composites for the Diagnosis/Therapy of Cancer -- 11.2.1 Metal‐Graphene Nanocomposites -- 11.2.1.1 Gold‐Graphene Composites -- 11.2.1.2 Magnetic Graphene Nanocomposites -- 11.2.2 Polymeric Graphene Nanocomposites -- 11.2.3 Graphene Biomaterials for MR Imaging -- 11.3 Multimodal Graphene‐Based Composites for the Radiotherapy of Cancer -- 11.4 Graphene‐Based Nanobiomaterials for Cancer Diagnosis -- 11.5 Conclusion -- Acknowledgment -- References -- Chapter 12 Carbon Nanomaterials for Photothermal Therapies -- 12.1 Introduction -- 12.2 GO for PTT -- 12.2.1 PTT‐Related Physical and Chemical Properties of GO.
12.2.2 GO for in vitro PTT.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Series Preface -- Preface -- Part I Basics of Carbon Nanomaterials -- Chapter 1 Introduction to Carbon Structures -- 1.1 Carbon Age -- 1.2 Classification -- 1.3 Fullerene -- 1.4 Carbon Nanotubes -- 1.4.1 Structure -- 1.4.2 Electronics -- 1.5 Graphene -- 1.5.1 Structure -- 1.5.2 Electronics -- 1.6 Nanodiamonds and Carbon Dots -- Acknowledgment -- References -- Chapter 2 Using Polymers to Enhance the Carbon Nanomaterial Biointerface -- 2.1 Introduction -- 2.2 Colloidal Stability of CNMs -- 2.3 Functionalization of CNMs with Polymers -- 2.3.1 Noncovalent Approaches -- 2.3.2 Covalent Approaches -- 2.4 Influence of Polymers on the Spectral Properties of CNMs -- 2.5 Functionalizing CNMs with Antifouling Polymers for Bioapplications -- 2.6 Functionalization of CNMs with Stimuli‐Responsive Polymers -- 2.6.1 Carbon Nanoparticles with Thermoresponsive Polymers -- 2.6.2 pH‐Responsive Carbon Nanoparticles -- 2.6.3 Redox‐Responsive Carbon Nanoparticles -- 2.6.4 Multi‐Responsive Carbon Nanoparticles -- 2.7 Functionalization of CNMs with Polymers for Delivery of Nucleic Acids -- 2.8 Outlook -- Acknowledgments -- References -- Chapter 3 Carbon Nanomaterials for Optical Bioimaging and Phototherapy -- 3.1 Introduction -- 3.2 Surface Functionalization of Carbon Nanomaterials -- 3.3 Carbon Nanomaterials for Optical Imaging -- 3.3.1 Intrinsic Fluorescence of Carbon Nanomaterials -- 3.3.2 Imaging Utilizing Intrinsic Fluorescence Features of Carbon Nanomaterials -- 3.3.3 Imaging with Fluorescently Labeled Carbon Nanomaterials -- 3.4 Carbon Nanomaterials for Phototherapies of Cancer -- 3.4.1 Photothermal Therapy -- 3.4.2 Photodynamic Therapy -- 3.5 Conclusions and Outlook -- References -- Part II Bioimaging and Bioanalysis.

Chapter 4 High‐Resolution and High‐Contrast Fluorescence Imaging with Carbon Nanomaterials for Preclinical and Clinical Applications -- 4.1 Introduction -- 4.2 Survey of Carbon Nanomaterials -- 4.2.1 Fluorescent Nanodiamonds -- 4.2.2 Carbon Nanotubes -- 4.2.3 Graphene -- 4.2.4 Carbon Nanodots -- 4.3 Fluorescent Properties of FNDs and SWCNTs -- 4.3.1 FNDs -- 4.3.2 SWCNTs -- 4.4 Survey of High‐Resolution and High‐Contrast Imaging -- 4.4.1 General Considerations for Eventual Human Use -- 4.4.2 General Considerations for Achieving High‐Resolution and High‐Contrast Imaging -- 4.4.2.1 Photoacoustic Imaging (PAI) -- 4.4.2.2 X‐ray Computed Tomographic (CT) Imaging -- 4.4.2.3 Magnetic Resonance Imaging (MRI) -- 4.4.2.4 Image Alignment and Drift Correction -- 4.4.3 Preclinical and Clinical Optical Imaging with CNMs -- 4.4.4 Optical Imaging in the Short‐Wavelength Window (~650-950 nm) -- 4.4.4.1 Optical Imaging Beyond the Diffraction Limit -- 4.4.4.2 Selective Modulation of Emission -- 4.4.4.3 Time‐Gated Fluorescence Lifetime Imaging -- 4.4.5 Optical Imaging in the Long‐Wavelength Window (~950-1400 nm) -- 4.5 Conclusions -- References -- Chapter 5 Carbon Nanomaterials for Deep‐Tissue Imaging in the NIR Spectral Window -- 5.1 Introduction -- 5.1.1 Transparent Optical Windows in Biological Tissue -- 5.1.2 Near‐Infrared Imaging Materials -- 5.2 Carbon Nanomaterials for NIR Imaging -- 5.2.1 Biocompatibility of CNMs -- 5.2.2 Fluorescence of CNMs Probes -- 5.2.3 Covalent and Noncovalent Functionalization -- 5.2.4 CNMs as Bioimaging Platforms -- 5.2.4.1 Fullerene -- 5.2.4.2 Carbon Nanotubes -- 5.2.4.3 Graphene Derivatives -- 5.2.4.4 Carbon Dots -- 5.2.4.5 Carbon Nano-onions -- 5.2.4.6 Nanodiamonds -- 5.3 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 6 Tracking Photoluminescent Carbon Nanomaterials in Biological Systems -- Chapter Summary.

6.1 Introduction -- 6.2 Tracking Cells in Organisms with Fluorescent Nanodiamonds -- 6.3 Monitoring Inter and Intra Cellular Dynamics with Fluorescent Nanodiamonds -- 6.4 Single‐Walled Carbon Nanotubes: A Near‐Infrared Optical Probe of the Nanoscale Extracellular Space in Live Brain Tissue -- 6.5 Conclusion -- References -- Chapter 7 Photoacoustic Imaging with Carbon Nanomaterials -- Chapter Summary -- 7.1 Introduction -- 7.2 Photoacoustic Imaging Systems -- 7.2.1 Photoacoustic Microscopy -- 7.2.2 Photoacoustic Computed Tomography -- 7.3 Photoacoustic Application of Carbon Nanomaterials -- 7.3.1 Carbon Nanomaterials for Photoacoustic Imaging Contrast Agents -- 7.3.2 Carbon Nanomaterials for Multimodal Photoacoustic Imaging -- 7.3.3 Carbon Nanomaterials for Photoacoustic Image‐Guided Therapy -- 7.3.4 Conclusions and Future Perspective -- Acknowledgments -- References -- Chapter 8 Carbon Nanomaterial Sensors for Cancer and Disease Diagnosis -- 8.1 Introduction -- 8.2 Detection of VOC by Using Gas/Vapor Sensors for Cancer and Disease Diagnosis -- 8.2.1 Carbon Nanodots (CNDs) and Graphene Quantum Dots (GQDs) for VOC Sensors -- 8.2.2 Carbon Nanotubes (CNTs) for VOC Sensors -- 8.2.3 Graphene for VOC Sensors -- 8.3 Detection of Biomarkers Using Biosensors for Cancer and Disease Diagnosis -- 8.3.1 Carbon Nanodot‐ and Graphene Quantum Dot‐Based Biosensors for Disease Biomarkers Detection -- 8.3.2 Carbon Nanotube‐Based Biosensors for Cancer Biomarker Detection -- 8.3.3 Carbon Nanotube‐Based Biosensors for Disease Biomarker Detection -- 8.3.4 Graphene‐Based Biosensors for Cancer Biomarker Detection -- 8.3.5 Graphene‐Based Biosensors for Disease Biomarker Detection -- 8.4 Conclusions and Perspectives -- Acknowledgments -- References -- Chapter 9 Recent Advances in Carbon Dots for Bioanalysis and the Future Perspectives -- 9.1 Introduction.

9.2 Fundamentals of CDs -- 9.2.1 Synthesis Approaches -- 9.2.2 Optical Properties -- 9.2.2.1 Absorbance and Photoluminescence (PL) -- 9.2.2.2 Quantum Yield (QY) -- 9.2.2.3 Photoluminescence Origins -- 9.2.2.4 Up‐Conversion Photoluminescence (UCPL) -- 9.2.2.5 Phosphorescence -- 9.2.3 Physical and Chemical Properties -- 9.2.4 Biosafety Assessments -- 9.3 Bioengineering of CDs for Bioanalysis -- 9.3.1 Functionalization Mechanism and Strategies -- 9.3.1.1 Chemical Functionalization -- 9.3.1.2 Doping -- 9.3.1.3 Coupling with Gold Nanoparticles -- 9.3.1.4 Fabrication onto Solid Polymeric Matrices -- 9.3.2 Biomolecules Grafted on CDs as Sensing Receptors -- 9.3.2.1 Deoxyribonucleic Acid (DNA) -- 9.3.2.2 Aptamers -- 9.3.2.3 Proteins/Peptides -- 9.3.2.4 Biopolymers -- 9.4 Bioanalysis Applications of CDs -- 9.4.1 Biosensing Mechanism/Transduction Schemes -- 9.4.1.1 Fluorescence -- 9.4.1.2 Chemiluminescence (CL) -- 9.4.1.3 Electrochemiluminescence (ECL) -- 9.4.1.4 Electrochemical -- 9.4.2 Uses of CDs in Bioanalysis -- 9.4.2.1 Heavy Metals/Elements -- 9.4.2.2 Reactive Oxygen/Nitrogen Species (ROS/RNS) -- 9.4.2.3 Oligonucleotides -- 9.4.2.4 Small Molecules/Pharmaceutical Drugs/Natural Compounds -- 9.4.2.5 Proteins -- 9.4.2.6 Enzyme Activities and Inhibitor Screening -- 9.4.2.7 pH -- 9.4.2.8 Temperature -- 9.4.3 Solid‐State Sensing for Point‐of‐Care Diagnostic Kits -- 9.4.4 Bioimaging/Real‐Time Monitoring -- 9.4.5 Theranostics -- 9.5 Future Perspectives -- 9.5.1 Better Understanding of PL Mechanisms -- 9.5.2 Establishment of Systematic Synthesis Protocol -- 9.5.3 QY Improvement and Spectral Expansion to Longer Wavelength -- 9.5.4 Sensitivity Improvement for Solid‐State Sensing -- 9.6 Conclusions -- References -- Part III Therapy -- Chapter 10 Functionalized Carbon Nanomaterials for Drug Delivery -- 10.1 Introduction.

10.2 Direct Fabrication of Graphene‐Based Composite with Photosensitizer for Cancer Phototherapy -- 10.2.1 Fabrication of Graphene‐Based Composite with Chlorin e6 (G‐Ce6) -- 10.2.2 Characterization of G‐Ce6 -- 10.2.3 In vitro Evaluation of G‐Ce6 for Cancer Phototherapy -- 10.3 Polyglycerol‐Functionalized Nanodiamond Conjugated with Platinum‐Based Drug for Cancer Chemotherapy -- 10.3.1 Synthesis of Polyglycerol‐Functionalized Nanodiamond Conjugated with Platinum‐Based Drug and Targeting Peptide -- 10.3.2 Characterization of Polyglycerol‐Functionalized Nanodiamond and the Derivatives -- 10.3.3 In vitro Evaluation of Polyglycerol‐Functionalized Nanodiamond Conjugated with Platinum‐Based Drug for Cancer Chemotherapy -- 10.4 Polyglycerol‐Functionalized Nanodiamond Hybridized with DNA for Gene Therapy -- 10.4.1 Synthesis and Characterization of Polyglycerol‐Functionalized Nanodiamond Conjugated with Basic Polypeptides -- 10.4.2 Characterization of Polyglycerol‐Functionalized Nanodiamond Hybridized with Plasmid DNA -- 10.5 Conclusions and Perspectives -- Acknowledgments -- References -- Chapter 11 Multifunctional Graphene‐Based Nanocomposites for Cancer Diagnosis and Therapy -- 11.1 Introduction -- 11.2 Multifunctional Graphene‐Based Composites for the Diagnosis/Therapy of Cancer -- 11.2.1 Metal‐Graphene Nanocomposites -- 11.2.1.1 Gold‐Graphene Composites -- 11.2.1.2 Magnetic Graphene Nanocomposites -- 11.2.2 Polymeric Graphene Nanocomposites -- 11.2.3 Graphene Biomaterials for MR Imaging -- 11.3 Multimodal Graphene‐Based Composites for the Radiotherapy of Cancer -- 11.4 Graphene‐Based Nanobiomaterials for Cancer Diagnosis -- 11.5 Conclusion -- Acknowledgment -- References -- Chapter 12 Carbon Nanomaterials for Photothermal Therapies -- 12.1 Introduction -- 12.2 GO for PTT -- 12.2.1 PTT‐Related Physical and Chemical Properties of GO.

12.2.2 GO for in vitro PTT.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.