ORPP logo
Image from Google Jackets

Progress in Optical Fibers.

By: Material type: TextTextSeries: NonePublisher: New York : Nova Science Publishers, Incorporated, 2011Copyright date: ©2008Edition: 1st edDescription: 1 online resource (416 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781622570027
Subject(s): Genre/Form: Additional physical formats: Print version:: Progress in Optical FibersDDC classification:
  • 621.3692
LOC classification:
  • QC448 -- .P758 2011eb
Online resources:
Contents:
Intro -- PROGRESS IN OPTICAL FIBERS -- PROGRESS IN OPTICAL FIBERS -- CONTENTS -- PREFACE -- RESEARCH AND REVIEW STUDIES -- Chapter 1 INTEGRATED OPTICAL RING RESONATORS: MODELLING AND TECHNOLOGIES -- Abstract -- 1. Introduction -- 2. Modelling -- 2.1. Transfer Matrix Approach -- 2.2. Bidirectional Model -- 2.3. Z-Transform Based Model -- 2.3. Time-Dependent Model -- 2.5. Modelling Based on FDTD -- 3. Technologies -- 3.1. Silica-on-Silicon Technology -- 3.2. Glass Technology -- 3.3. Lithium Niobate Technology -- 3.4. Polymer Technology -- 3.5. SiON, Si3N4 and Sin Technologies -- 3.6. SOI Technology -- 3.7. III-V Semiconductors Technology -- 4. Conclusion -- Acknowledgements -- References -- Chapter 2 VCSEL RESONATORS -- Abstract -- Introduction -- The Model -- The (GaIn)(NAs)/GaAs Quantum Well -- The (GaIn)(NAsSb)/Ga(NAs) Quantum Well -- The Electrical Model -- The Optical Model -- The Thermal Model -- The Gain Model -- Interactions between Individual Physical Phenomena -- Oxide-Confined 1.3- M GaAs-Based VCSELs [41] -- VCSEL with a Single Oxide Aperture -- VCSELs with Two Oxide Apertures -- Oxide-Confined 1.5- M GaAs-Based VCSELs -- Conclusion -- Acknowledgments -- References -- Chapter 3MICROSTUB RESONATORS BASED-WAVEGUIDES FORFILTERING AND MULTIPLEXING DEVICES -- Abstract -- Introduction -- 1. Geometrical Parameters and Method of Calculation -- 2.Rejective Filter -- 2.1. Effect of the Metallization of the Stub -- 2.2. Effects of the Geometrical Parameters -- 2.3. Improvement of the Quality Factor -- 2.4. Symmetric Wave Excitation -- 2.5. Three Dimensional Structure -- 2.6. Application to the Near Optical Regime -- 3. Selective Filter -- 4. Bent Y-Branch Waveguide -- 4.1. Y-Branch Rejective Filter -- 4.2. Y-Branch Selective Filter -- Conclusion -- References.
Chapter 4DEVELOPMENT OF RAIN AND SCINTILLATIONMODELS AT KU-BAND IN SOUTHEAST ASIATROPICAL COUNTRIES -- Abstract -- Chapter 1. Introduction -- 1.1. Background -- 1.2. Objectives of the Research -- 1.3. Organization of the Thesis -- Chapter 2. Rainfall And Scintillation Models -- 2.1. Introduction -- 2.2. The Importance of Rainfall Rate -- 2.3. Rainfall in Tropical and Equatorial Regions -- 2.4. Prediction of Rainfall Attenuation Using Rainfall Rate -- 2.4.1. Prediction of Rainfall Attenuation Using Equiprobability Method -- 2.5. Prediction of Tropospheric Scintillation -- 2.5.1. Theory of Tropospheric Scintillation -- 2.5.2. Theory of Turbulence-Induced Scintillation -- 2.5.3. Description of Scintillation Effects -- 2.6. Conversion of Rainfall Rate from Sixty-Minutes to One-Minute -- 2.6.1. Segal's Method -- 2.6.2. Burgueno's Method -- 2.6.3. Chebil and Rahman's Method -- 2.6.4. Joo's Method -- 2.6.5. Moupfouma's Method -- 2.7. One-Minute Rainfall Rates Models -- 2.7.1. Dutton and Dougherty Rainfall Rate Model -- 2.7.2. KIT (Kitami Institute of Technology) Simplified Rainfall Rate Model -- 2.7.3. Morita Rainfall Rate Model -- 2.7.4. Moupfouma (Refined) Rainfall Rate Model -- 2.7.5. Rice and Holmberg Rainfall Rate Model -- 2.7.6. Douglas and Sims Rainfall Rate Distribution -- 2.7.7. Crane Rainfall Rate Distribution -- 2.7.8. ITU Rainfall Rate Model -- 2.8. One-minute Rainfall Attenuation Models -- 2.8.1. CETUC Rainfall Attenuation Model -- 2.8.2. Crane Global Rainfall Attenuation Model -- 2.8.3. DAH and ITU Rainfall Attenuation Model -- 2.8.4. Flavin Rainfall Attenuation Model -- 2.8.5. Gracia Lopez Rainfall Attenuation Model -- 2.8.6. Lin Rainfall Attenuation Model -- 2.8.7. Moupfouma Rainfall Attenuation Model -- 2.8.8. Yamada Rainfall Attenuation Model -- 2.8.9. Ong and Choo's Rainfall Attenuation Model.
2.8.10. Assis (refined) Rainfall Attenuation Model -- 2.8.11. Simple Attenuation Model (SAM Model) -- 2.9. Tropospheric Scintillation Models -- 2.9.1. ITU Tropospheric Scintillation Model -- 2.9.2. DPSP and MPSP Tropospheric Scintillation Model -- 2.9.3. Otung Tropospheric Scintillation Model -- 2.9.4. Kamp Tropospheric Scintillation Model -- 2.9.5. Karasawa Tropospheric Scintillation Model -- 2.9.6. Kamp-Tervonen-Salonen (KVS) Tropospheric Scintillation Model -- 2.9.7. Ortgies Nwet and T Tropospheric Scintillation Model -- 2.10. Other Propagation Impairments -- 2.10.1. Atmospheric Attenuation -- 2.10.2. Cloud Attenuation -- Chapter 3. Methodology -- 3.1. Introduction -- 3.2. Rainfall Measurement System -- 3.2.1. The RS-102 Tipping Bucket Rain Gauge -- 3.2.2. The Casella Tipping Bucket Rain Gauge -- 3.3. Satellite Beacon Signal Measurement System -- 3.4. Calibration of the Instruments Used for Measurement -- 3.4.1. Conversion of Rainfall Data to Rainfall Rate -- 3.4.2.Tipping Bucket Rain Gauge Calibration -- 3.4.3. Calibration of Beacon Monitor -- 3.5. Other Instruments Used -- 3.5.1. Humidity and Temperature Transmitter -- 3.5.2. Barometer Pressure Gauge -- 3.5.3. Wind Direction and Speed Transmitter -- Chapter 4. Stastical Analysis Rainfall and Scintillation PredictionModels -- 4.1. The Variation of Rainfall Amount -- 4.2. Rainfall Analysis -- 4.2.1. Percentage of Time Calculation -- 4.3. Error Analysis -- 4.3.1. The Uncertainty of Measurements -- 4.3.2. Regression Residual -- 4.4. Statistical Confidence Level -- 4.5. Test of the Prediction Models -- 4.5.1. RMS Percentage Error -- 4.6. Calculation of the Confidence Level and Interval of the Measured Data -- 4.7. Analysis of 60-Minutes Rainfall Rate Conversion Results -- 4.8. Analysis of 1-Minutes Rainfall Rate Measured Data with ExistingModels.
4.9. Analysis of 1-Minutes Rainfall Attenuation Measured Data with ExistingModels -- 4.10. Analysis of Tropospheric Scintillation Measured Data with ExistingModels -- 4.11. The Effect of Wind on Rain -- 4.12. Propagation Impairment caused by Atmospheric and CloudAttenuation -- Chapter 5. Development of Rainfall Rate, Rainfall Attenuationand Scintillation Models -- 5.1. 1-Minute Two-Part Rainfall Rate Model -- 5.2. Applying the Two-Part Model for Different Measurement Site -- 5.3. Rainfall Attenuation Model -- 5.4. Applying the Proposed Rainfall Attenuation Model at DifferentLocations -- 5.5. Tropospheric Scintillation Model -- Chapter 6. Conclusions -- 6.1. Conclusions -- 6.2. Recommendations for Future Study -- Appendix A.Rainfall Rate Climatic Regions -- Appendix B.Measurement Instruments -- Appendix C.Results in Terms of Table and Figure -- Appendix D.Matlab Coding -- List of Symbols -- Acknowledgments -- References -- Chapter 5 RESONATOR FOR SELECTIVE VORTEX LASER BEAM GENERATION IN END-PUMPED SOLID-STATE LASERS -- Abstract -- Introduction -- Basic Theory -- 1. Paraxial Wave Equation Solutions -- 1.1. Hermite-Gaussian Modes (HGMs) -- 1.2. Laguerre-Gaussian Modes (LGMs) -- 1.3. Ince-Gaussian Modes (IGMs) -- 2. Specified Laser Mode Excitation in End-Pumped Solid-State Lasers -- 2.1. Controlled 0,xnHGMode Excitation -- 2.2. Controlled IGep,p Mode Excitation -- 3. Astigmatic Mode Converter Operation -- 4. Donut-Like Vortex Beam Generator Design Flow -- Simulation Model -- Vortex Laser Beam Generation from the Three-Lens Resonator -- 1. Donut-Like Vortex Beam Generation -- 2. Rectangular Vortex Beams with Specified Vortex Number -- Conclusions -- References -- SHORT COMMUNICATIONS -- Short Communication ACOMPUTATIONAL AND EXPERIMENTAL ANALYSIS OFA STABLE-UNSTABLE OPTICAL RESONATOR FOR ADIFFUSION COOLED CO2 WAVEGUIDE LASER -- Abstract.
Introduction -- Theoretical Frame -- Numerical Simulation Thechniques for Unstable Resonators -- Resonator Model Simulation (Unidimensional) -- Laser Head Construction: Rectangular Metal-CeramicWaveguide -- Laser Performance Analysis -- Conclusion -- Acknowledgment -- References -- ShortCommunicationBAFRACTIONALFOURIERTRANSFORMTHEORYOFOPTICALRESONATORS -- Abstract -- Introduction -- 1.MetaxialDiffraction -- 1.1.MetaxialApproximation -- 1.2.FieldAmplitudeandIrradiance -- 1.3.CoordinatesonaSphericalSegment -- 1.4.CurvatureTransparency -- 1.5.PracticalSphericalEmittersandReceivers -- 1.5.1.SphericalWaves -- 1.5.2.EquivalentSphericalEmitter -- 1.6.FraunhoferDiffraction.FourierSphere -- AproofofEq.(12) -- 1.7.GeneralTransferandFresnelDiffraction -- 1.8.CoherentImaging -- 1.9.TheRadiusMagnificationLawofBonnet -- 1.10.DiffractionandImaging -- 2.FractionalFourierOptics -- 2.1.TheFractionalOrderFourierTransform -- 2.1.1.Definition -- 2.1.2.SomePropertiesofFractionalOrderFourierTransforms -- 2.2.MetaxialDiffractioninFractionalForm[29,33,34] -- 2.2.1.FractionalPrderAssociatedwithaDiffractionPhenomenon -- 2.2.2.RealOrderTransfers -- 2.2.3.ComplexOrderTransfers[35] -- 2.2.4.CorrespondenceofParameters -- 2.2.5.RealversusComplexTransfers:AGraphicalAnalysis -- 2.2.6.TwoKindsofComplexOrderTransfers -- 2.3.CoherentImaginginFractionalForm -- 3.ApplicationtoOpticalResonators -- 3.1.RulesfortheMirrors -- 3.2.QuadraticPhaseFactorAmplitudeonaSphericalMirror -- 3.3.FieldTransferfromaMirrortotheOther -- 3.4.RoundTrip -- 3.5.ResonatingWaves.TransverseModes -- 3.6.LongitudinalModes -- 3.7.ResonatorStability -- 3.7.1.UsualStabilityCondition -- 3.7.2.GraphicalAnalysis -- 3.8.DualResonator -- 3.9.ImagingaResonator -- 3.10.ResonatorswithInternalLenses -- 4.StableResonators.BeamWaist -- 4.1.TransverseModes -- 4.2.ExistenceoftheBeamWaist -- 4.3.LocalizationoftheBeamWaist.
4.4.SizeoftheBeamWaist.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- PROGRESS IN OPTICAL FIBERS -- PROGRESS IN OPTICAL FIBERS -- CONTENTS -- PREFACE -- RESEARCH AND REVIEW STUDIES -- Chapter 1 INTEGRATED OPTICAL RING RESONATORS: MODELLING AND TECHNOLOGIES -- Abstract -- 1. Introduction -- 2. Modelling -- 2.1. Transfer Matrix Approach -- 2.2. Bidirectional Model -- 2.3. Z-Transform Based Model -- 2.3. Time-Dependent Model -- 2.5. Modelling Based on FDTD -- 3. Technologies -- 3.1. Silica-on-Silicon Technology -- 3.2. Glass Technology -- 3.3. Lithium Niobate Technology -- 3.4. Polymer Technology -- 3.5. SiON, Si3N4 and Sin Technologies -- 3.6. SOI Technology -- 3.7. III-V Semiconductors Technology -- 4. Conclusion -- Acknowledgements -- References -- Chapter 2 VCSEL RESONATORS -- Abstract -- Introduction -- The Model -- The (GaIn)(NAs)/GaAs Quantum Well -- The (GaIn)(NAsSb)/Ga(NAs) Quantum Well -- The Electrical Model -- The Optical Model -- The Thermal Model -- The Gain Model -- Interactions between Individual Physical Phenomena -- Oxide-Confined 1.3- M GaAs-Based VCSELs [41] -- VCSEL with a Single Oxide Aperture -- VCSELs with Two Oxide Apertures -- Oxide-Confined 1.5- M GaAs-Based VCSELs -- Conclusion -- Acknowledgments -- References -- Chapter 3MICROSTUB RESONATORS BASED-WAVEGUIDES FORFILTERING AND MULTIPLEXING DEVICES -- Abstract -- Introduction -- 1. Geometrical Parameters and Method of Calculation -- 2.Rejective Filter -- 2.1. Effect of the Metallization of the Stub -- 2.2. Effects of the Geometrical Parameters -- 2.3. Improvement of the Quality Factor -- 2.4. Symmetric Wave Excitation -- 2.5. Three Dimensional Structure -- 2.6. Application to the Near Optical Regime -- 3. Selective Filter -- 4. Bent Y-Branch Waveguide -- 4.1. Y-Branch Rejective Filter -- 4.2. Y-Branch Selective Filter -- Conclusion -- References.

Chapter 4DEVELOPMENT OF RAIN AND SCINTILLATIONMODELS AT KU-BAND IN SOUTHEAST ASIATROPICAL COUNTRIES -- Abstract -- Chapter 1. Introduction -- 1.1. Background -- 1.2. Objectives of the Research -- 1.3. Organization of the Thesis -- Chapter 2. Rainfall And Scintillation Models -- 2.1. Introduction -- 2.2. The Importance of Rainfall Rate -- 2.3. Rainfall in Tropical and Equatorial Regions -- 2.4. Prediction of Rainfall Attenuation Using Rainfall Rate -- 2.4.1. Prediction of Rainfall Attenuation Using Equiprobability Method -- 2.5. Prediction of Tropospheric Scintillation -- 2.5.1. Theory of Tropospheric Scintillation -- 2.5.2. Theory of Turbulence-Induced Scintillation -- 2.5.3. Description of Scintillation Effects -- 2.6. Conversion of Rainfall Rate from Sixty-Minutes to One-Minute -- 2.6.1. Segal's Method -- 2.6.2. Burgueno's Method -- 2.6.3. Chebil and Rahman's Method -- 2.6.4. Joo's Method -- 2.6.5. Moupfouma's Method -- 2.7. One-Minute Rainfall Rates Models -- 2.7.1. Dutton and Dougherty Rainfall Rate Model -- 2.7.2. KIT (Kitami Institute of Technology) Simplified Rainfall Rate Model -- 2.7.3. Morita Rainfall Rate Model -- 2.7.4. Moupfouma (Refined) Rainfall Rate Model -- 2.7.5. Rice and Holmberg Rainfall Rate Model -- 2.7.6. Douglas and Sims Rainfall Rate Distribution -- 2.7.7. Crane Rainfall Rate Distribution -- 2.7.8. ITU Rainfall Rate Model -- 2.8. One-minute Rainfall Attenuation Models -- 2.8.1. CETUC Rainfall Attenuation Model -- 2.8.2. Crane Global Rainfall Attenuation Model -- 2.8.3. DAH and ITU Rainfall Attenuation Model -- 2.8.4. Flavin Rainfall Attenuation Model -- 2.8.5. Gracia Lopez Rainfall Attenuation Model -- 2.8.6. Lin Rainfall Attenuation Model -- 2.8.7. Moupfouma Rainfall Attenuation Model -- 2.8.8. Yamada Rainfall Attenuation Model -- 2.8.9. Ong and Choo's Rainfall Attenuation Model.

2.8.10. Assis (refined) Rainfall Attenuation Model -- 2.8.11. Simple Attenuation Model (SAM Model) -- 2.9. Tropospheric Scintillation Models -- 2.9.1. ITU Tropospheric Scintillation Model -- 2.9.2. DPSP and MPSP Tropospheric Scintillation Model -- 2.9.3. Otung Tropospheric Scintillation Model -- 2.9.4. Kamp Tropospheric Scintillation Model -- 2.9.5. Karasawa Tropospheric Scintillation Model -- 2.9.6. Kamp-Tervonen-Salonen (KVS) Tropospheric Scintillation Model -- 2.9.7. Ortgies Nwet and T Tropospheric Scintillation Model -- 2.10. Other Propagation Impairments -- 2.10.1. Atmospheric Attenuation -- 2.10.2. Cloud Attenuation -- Chapter 3. Methodology -- 3.1. Introduction -- 3.2. Rainfall Measurement System -- 3.2.1. The RS-102 Tipping Bucket Rain Gauge -- 3.2.2. The Casella Tipping Bucket Rain Gauge -- 3.3. Satellite Beacon Signal Measurement System -- 3.4. Calibration of the Instruments Used for Measurement -- 3.4.1. Conversion of Rainfall Data to Rainfall Rate -- 3.4.2.Tipping Bucket Rain Gauge Calibration -- 3.4.3. Calibration of Beacon Monitor -- 3.5. Other Instruments Used -- 3.5.1. Humidity and Temperature Transmitter -- 3.5.2. Barometer Pressure Gauge -- 3.5.3. Wind Direction and Speed Transmitter -- Chapter 4. Stastical Analysis Rainfall and Scintillation PredictionModels -- 4.1. The Variation of Rainfall Amount -- 4.2. Rainfall Analysis -- 4.2.1. Percentage of Time Calculation -- 4.3. Error Analysis -- 4.3.1. The Uncertainty of Measurements -- 4.3.2. Regression Residual -- 4.4. Statistical Confidence Level -- 4.5. Test of the Prediction Models -- 4.5.1. RMS Percentage Error -- 4.6. Calculation of the Confidence Level and Interval of the Measured Data -- 4.7. Analysis of 60-Minutes Rainfall Rate Conversion Results -- 4.8. Analysis of 1-Minutes Rainfall Rate Measured Data with ExistingModels.

4.9. Analysis of 1-Minutes Rainfall Attenuation Measured Data with ExistingModels -- 4.10. Analysis of Tropospheric Scintillation Measured Data with ExistingModels -- 4.11. The Effect of Wind on Rain -- 4.12. Propagation Impairment caused by Atmospheric and CloudAttenuation -- Chapter 5. Development of Rainfall Rate, Rainfall Attenuationand Scintillation Models -- 5.1. 1-Minute Two-Part Rainfall Rate Model -- 5.2. Applying the Two-Part Model for Different Measurement Site -- 5.3. Rainfall Attenuation Model -- 5.4. Applying the Proposed Rainfall Attenuation Model at DifferentLocations -- 5.5. Tropospheric Scintillation Model -- Chapter 6. Conclusions -- 6.1. Conclusions -- 6.2. Recommendations for Future Study -- Appendix A.Rainfall Rate Climatic Regions -- Appendix B.Measurement Instruments -- Appendix C.Results in Terms of Table and Figure -- Appendix D.Matlab Coding -- List of Symbols -- Acknowledgments -- References -- Chapter 5 RESONATOR FOR SELECTIVE VORTEX LASER BEAM GENERATION IN END-PUMPED SOLID-STATE LASERS -- Abstract -- Introduction -- Basic Theory -- 1. Paraxial Wave Equation Solutions -- 1.1. Hermite-Gaussian Modes (HGMs) -- 1.2. Laguerre-Gaussian Modes (LGMs) -- 1.3. Ince-Gaussian Modes (IGMs) -- 2. Specified Laser Mode Excitation in End-Pumped Solid-State Lasers -- 2.1. Controlled 0,xnHGMode Excitation -- 2.2. Controlled IGep,p Mode Excitation -- 3. Astigmatic Mode Converter Operation -- 4. Donut-Like Vortex Beam Generator Design Flow -- Simulation Model -- Vortex Laser Beam Generation from the Three-Lens Resonator -- 1. Donut-Like Vortex Beam Generation -- 2. Rectangular Vortex Beams with Specified Vortex Number -- Conclusions -- References -- SHORT COMMUNICATIONS -- Short Communication ACOMPUTATIONAL AND EXPERIMENTAL ANALYSIS OFA STABLE-UNSTABLE OPTICAL RESONATOR FOR ADIFFUSION COOLED CO2 WAVEGUIDE LASER -- Abstract.

Introduction -- Theoretical Frame -- Numerical Simulation Thechniques for Unstable Resonators -- Resonator Model Simulation (Unidimensional) -- Laser Head Construction: Rectangular Metal-CeramicWaveguide -- Laser Performance Analysis -- Conclusion -- Acknowledgment -- References -- ShortCommunicationBAFRACTIONALFOURIERTRANSFORMTHEORYOFOPTICALRESONATORS -- Abstract -- Introduction -- 1.MetaxialDiffraction -- 1.1.MetaxialApproximation -- 1.2.FieldAmplitudeandIrradiance -- 1.3.CoordinatesonaSphericalSegment -- 1.4.CurvatureTransparency -- 1.5.PracticalSphericalEmittersandReceivers -- 1.5.1.SphericalWaves -- 1.5.2.EquivalentSphericalEmitter -- 1.6.FraunhoferDiffraction.FourierSphere -- AproofofEq.(12) -- 1.7.GeneralTransferandFresnelDiffraction -- 1.8.CoherentImaging -- 1.9.TheRadiusMagnificationLawofBonnet -- 1.10.DiffractionandImaging -- 2.FractionalFourierOptics -- 2.1.TheFractionalOrderFourierTransform -- 2.1.1.Definition -- 2.1.2.SomePropertiesofFractionalOrderFourierTransforms -- 2.2.MetaxialDiffractioninFractionalForm[29,33,34] -- 2.2.1.FractionalPrderAssociatedwithaDiffractionPhenomenon -- 2.2.2.RealOrderTransfers -- 2.2.3.ComplexOrderTransfers[35] -- 2.2.4.CorrespondenceofParameters -- 2.2.5.RealversusComplexTransfers:AGraphicalAnalysis -- 2.2.6.TwoKindsofComplexOrderTransfers -- 2.3.CoherentImaginginFractionalForm -- 3.ApplicationtoOpticalResonators -- 3.1.RulesfortheMirrors -- 3.2.QuadraticPhaseFactorAmplitudeonaSphericalMirror -- 3.3.FieldTransferfromaMirrortotheOther -- 3.4.RoundTrip -- 3.5.ResonatingWaves.TransverseModes -- 3.6.LongitudinalModes -- 3.7.ResonatorStability -- 3.7.1.UsualStabilityCondition -- 3.7.2.GraphicalAnalysis -- 3.8.DualResonator -- 3.9.ImagingaResonator -- 3.10.ResonatorswithInternalLenses -- 4.StableResonators.BeamWaist -- 4.1.TransverseModes -- 4.2.ExistenceoftheBeamWaist -- 4.3.LocalizationoftheBeamWaist.

4.4.SizeoftheBeamWaist.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.