Micro Energy Harvesting.
Material type:
- text
- computer
- online resource
- 9783527672936
- 621.312
- TK2897 -- .M537 2015eb
Cover -- Title Page -- Copyright -- Contents -- About the Volume Editors -- List of Contributors -- Chapter 1 Introduction to Micro Energy Harvesting -- 1.1 Introduction to the Topic -- 1.2 Current Status and Trends -- 1.3 Book Content and Structure -- Chapter 2 Fundamentals of Mechanics and Dynamics -- 2.1 Introduction -- 2.2 Strategies for Micro Vibration Energy Harvesting -- 2.2.1 Piezoelectric -- 2.2.2 Electromagnetic -- 2.2.3 Electrostatic -- 2.2.4 From Macro to Micro to Nano -- 2.3 Dynamical Models for Vibration Energy Harvesters -- 2.3.1 Stochastic Character of Ambient Vibrations -- 2.3.2 Linear Case 1: Piezoelectric Cantilever Generator -- 2.3.3 Linear Case 2: Electromagnetic Generator -- 2.3.4 Transfer Function -- 2.4 Beyond Linear Micro-Vibration Harvesting -- 2.4.1 Frequency Tuning -- 2.4.2 Multimodal Harvesting -- 2.4.3 Up-Conversion Techniques -- 2.5 Nonlinear Micro-Vibration Energy Harvesting -- 2.5.1 Bistable Oscillators: Cantilever -- 2.5.2 Bistable Oscillators: Buckled Beam -- 2.5.3 Monostable Oscillators -- 2.6 Conclusions -- Acknowledgments -- References -- Chapter 3 Electromechanical Transducers -- 3.1 Introduction -- 3.2 Electromagnetic Transducers -- 3.2.1 Basic Principle -- 3.2.1.1 Induced Voltage -- 3.2.1.2 Self-Induction -- 3.2.1.3 Mechanical Aspect -- 3.2.2 Typical Architectures -- 3.2.2.1 Case Study -- 3.2.2.2 General Case -- 3.2.3 Energy Extraction Cycle -- 3.2.3.1 Resistive Cycle -- 3.2.3.2 Self-Inductance Cancelation -- 3.2.3.3 Cycle with Rectification -- 3.2.3.4 Active Cycle -- 3.2.4 Figures of Merit and Limitations -- 3.3 Piezoelectric Transducers -- 3.3.1 Basic Principles and Constitutive Equations -- 3.3.1.1 Physical Origin of Piezoelectricity in Ceramics and Crystals -- 3.3.1.2 Constitutive Equations -- 3.3.2 Typical Architectures for Energy Harvesting -- 3.3.2.1 Modeling.
3.3.2.2 Application to Typical Configurations -- 3.3.3 Energy Extraction Cycles -- 3.3.3.1 Resistive Cycles -- 3.3.3.2 Cycles with Rectification -- 3.3.3.3 Active Cycles -- 3.3.3.4 Comparison -- 3.3.4 Maximal Power Density and Figure of Merit -- 3.4 Electrostatic Transducers -- 3.4.1 Basic Principles -- 3.4.1.1 Gauss's Law -- 3.4.1.2 Capacitance C0 -- 3.4.1.3 Electric Potential -- 3.4.1.4 Energy -- 3.4.1.5 Force -- 3.4.2 Design Parameters for a Capacitor -- 3.4.2.1 Architecture -- 3.4.2.2 Dielectric -- 3.4.3 Energy Extraction Cycles -- 3.4.3.1 Charge-Constrained Cycle -- 3.4.3.2 Voltage-Constrained Cycle -- 3.4.3.3 Electret Cycle -- 3.4.4 Limits -- 3.4.4.1 Parasitic Capacitors -- 3.4.4.2 Breakdown Voltage -- 3.4.4.3 Pull-In Force -- 3.5 Other Electromechanical Transduction Principles -- 3.5.1 Electrostrictive Materials -- 3.5.1.1 Physical Origin and Constitutive Equations -- 3.5.1.2 Energy Harvesting Strategies -- 3.5.2 Magnetostrictive Materials -- 3.5.2.1 Physical Origin -- 3.5.2.2 Constitutive Equations -- 3.6 Effect of the Vibration Energy Harvester Mechanical Structure -- 3.7 Summary -- References -- Chapter 4 Thermal Fundamentals -- 4.1 Introduction -- 4.2 Fundamentals of Thermoelectric Power Generation -- 4.2.1 Overview of Nanoscale Heat Conduction and the Seebeck Effect -- 4.2.2 Heat Transfer Analysis of Thermoelectric Power Generation -- 4.3 Near-Field Thermal Radiation and Thermophotovoltaic Power Generation -- 4.3.1 Introduction -- 4.3.2 Theoretical Framework: Fluctuational Electrodynamics -- 4.3.3 Introduction to Thermophotovoltaic Power Generation and Physics of Near-Field Radiative Heat Transfer between Two Bulk Materials Separated by a Subwavelength Vacuum Gap -- 4.3.4 Nanoscale-Gap Thermophotovoltaic Power Generation -- 4.4 Conclusions -- Acknowledgments -- References.
Chapter 5 Power Conditioning for Energy Harvesting - Theory and Architecture -- 5.1 Introduction -- 5.2 The Function of Power Conditioning -- 5.2.1 Interface to the Harvester -- 5.2.2 Circuits with Resistive Input Impedance -- 5.2.3 Circuits with Reactive Input Impedance -- 5.2.4 Circuits with Nonlinear Input Impedance -- 5.2.5 Peak Rectifiers -- 5.2.6 Piezoelectric Pre-biasing -- 5.2.7 Control -- 5.2.7.1 Voltage Regulation -- 5.2.7.2 Peak Power Controllers -- 5.2.8 System Architectures -- 5.2.8.1 Start-Up -- 5.2.9 Highly Dynamic Load Power -- 5.3 Summary -- References -- Chapter 6 Thermoelectric Materials for Energy Harvesting -- 6.1 Introduction -- 6.2 Performance Considerations in Materials Selection: zT -- 6.2.1 Properties of Chalcogenides (Group 16) -- 6.2.2 Properties of Crystallogens (Group 14) -- 6.2.3 Properties of Pnictides (Group 15) -- 6.2.4 Properties of Skutterudites -- 6.3 Influence of Scale on Material Selection and Synthesis -- 6.3.1 Thermal Conductance Mismatch -- 6.3.2 Domination of Electrical Contact Resistances -- 6.3.3 Domination of Bypass Heat Flow -- 6.3.4 Challenges in Thermoelectric Property Measurement -- 6.4 Low Dimensionality: Internal Micro/Nanostructure and Related Approaches -- 6.5 Thermal Expansion and Its Role in Materials Selection -- 6.6 Raw Material Cost Considerations -- 6.7 Material Synthesis with Particular Relevance to Micro Energy Harvesting -- 6.7.1 Electroplating, Electrophoresis, Dielectrophoresis -- 6.7.2 Thin and Thick Film Deposition -- 6.8 Summary -- References -- Chapter 7 Piezoelectric Materials for Energy Harvesting -- 7.1 Introduction -- 7.2 What Is Piezoelectricity? -- 7.3 Thermodynamics: the Right Way to Describe Piezoelectricity -- 7.4 Material Figure of Merit: the Electromechanical Coupling Factor -- 7.4.1 Special Considerations for Energy Harvesting -- 7.5 Perovskite Materials.
7.5.1 Structure -- 7.5.1.1 Ferroelectricity in Perovskites -- 7.5.1.2 Piezoelectricity in Perovskites: Poling Required -- 7.5.2 PZT Phase Diagram -- 7.5.3 Ceramics -- 7.5.3.1 Fabrication Process -- 7.5.3.2 Typical Examples for Energy Harvesting -- 7.5.4 Bulk Single Crystals -- 7.5.4.1 Perovskites -- 7.5.4.2 Energy Harvesting with Perovskites Bulk Single Crystals -- 7.5.5 Polycrystalline Perovskites Thin Films -- 7.5.5.1 Fabrication Processes -- 7.5.5.2 Energy Harvesting with Poly-PZT Films -- 7.5.6 Single-Crystal Thin Films -- 7.5.6.1 Fabrication Process -- 7.5.6.2 Energy Harvesting with SC Perovskite Films -- 7.5.7 Lead-Free -- 7.5.7.1 Energy Harvesting with Lead-Free Materials -- 7.6 Wurtzites -- 7.6.1 Structure -- 7.6.2 Thin Films and Energy Harvesting -- 7.6.3 Doping -- 7.7 PVDFs -- 7.7.1 Structure -- 7.7.2 Synthesis -- 7.7.3 Energy Harvesters with PVDF -- 7.8 Nanomaterials -- 7.9 Typical Values for the Main Piezoelectric Materials -- 7.10 Summary -- References -- Chapter 8 Electrostatic/Electret-Based Harvesters -- 8.1 Introduction -- 8.2 Electrostatic/Electret Conversion Cycle -- 8.3 Electrostatic/Electret Generator Models -- 8.3.1 Configuration of Electrostatic/Electret Generator -- 8.3.2 Electrode Design for Electrostatic/Electret Generator -- 8.4 Electrostatic Generators -- 8.4.1 Design and Fabrication Methods -- 8.4.2 Generator Examples -- 8.5 Electrets and Electret Generator Model -- 8.5.1 Electrets -- 8.5.2 Electret Materials -- 8.5.3 Charging Technologies -- 8.5.4 Electret Generator Model -- 8.6 Electret Generators -- 8.7 Summary -- References -- Chapter 9 Electrodynamic Vibrational Energy Harvesting -- 9.1 Introduction -- 9.2 Theoretical Background -- 9.2.1 Energy Storage, Dissipation, and Conversion -- 9.2.2 Electrodynamic Physics -- 9.2.2.1 Faraday's Law -- 9.2.2.2 Lorentz Force -- 9.2.3 Simplified Electrodynamic Equations.
9.3 Electrodynamic Harvester Architectures -- 9.4 Modeling and Optimization -- 9.4.1 Modeling -- 9.4.1.1 Lumped Element Method -- 9.4.1.2 Finite Element Method -- 9.4.1.3 Combination of Lumped Element Model and Finite Element Model -- 9.4.2 Optimization -- 9.5 Design and Fabrication -- 9.5.1 Design of Electrodynamic Harvesters -- 9.5.2 Fabrication of Electrodynamic Harvesters -- 9.6 Summary -- References -- Chapter 10 Piezoelectric MEMS Energy Harvesters -- 10.1 Introduction -- 10.1.1 The General Governing Equation -- 10.1.2 Design Consideration -- 10.2 Development of Piezoelectric MEMS Energy Harvesters -- 10.2.1 Overview -- 10.2.2 Fabrication Technologies -- 10.2.3 Characterization -- 10.2.3.1 Frequency Response -- 10.2.3.2 Output Power of Piezoelectric MEMS Energy Harvesters -- 10.3 Challenging Issues in Piezoelectric MEMS Energy Harvesters -- 10.3.1 Output Power -- 10.3.2 Frequency Response -- 10.3.3 Piezoelectric Material -- 10.4 Summary -- References -- Chapter 11 Vibration Energy Harvesting from Wideband and Time-Varying Frequencies -- 11.1 Introduction -- 11.1.1 Motivation -- 11.1.2 Classification of Devices -- 11.1.3 General Comments -- 11.2 Active Schemes for Tunable Resonant Devices -- 11.2.1 Stiffness Modification for Frequency Tuning -- 11.2.1.1 Modify L -- 11.2.1.2 Modify E -- 11.2.1.3 Modify k eff Using Axial Force -- 11.2.1.4 Modify k eff Using an External Spring -- 11.2.1.5 Modify k eff Using an Electrical External Spring -- 11.2.2 Mass Modification for Frequency Tuning -- 11.3 Passive Schemes for Tunable Resonant Devices -- 11.3.1 Modify m eff by Coupling Mass Position with Beam Excitation -- 11.3.2 Modify k eff by Coupling Axial Force with Centrifugal Force from Rotation -- 11.3.3 Modify L by Using Centrifugal Force to Toggle Beam Clamp Position -- 11.4 Wideband Devices -- 11.4.1 Multimodal Designs -- 11.4.2 Nonlinear Designs.
11.5 Summary and Future Research Directions.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.