Gas Injection for Disposal and Enhanced Recovery.
Material type:
- text
- computer
- online resource
- 9781118938584
- 622/.33827
- TN871.37 -- .G37 2014eb
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Section 1: Data and Correlations -- 1 Densities of Carbon Dioxide-Rich Mixtures Part I: Comparison with Pure CO2 -- 1.1 Introduction -- 1.2 Density -- 1.3 Literature Review -- 1.3.1 CO2 + Methane -- 1.3.2 CO2 + Nitrogen -- 1.4 Calculations -- 1.4.1 Kay's Rule -- 1.4.2 Modified Kay's Rule -- 1.4.3 Prausnitz-Gunn -- 1.5 Discussion -- 1.6 Conclusion -- References -- 2 Densities of Carbon Dioxide-Rich Mixtures Part II: Comparison with Thermodynamic Models -- 2.1 Introduction -- 2.2 Literature Review -- 2.3 Calculations -- 2.4 Lee Kesler -- 2.5 Benedict-Webb- Rubin (BWR) -- 2.6 Peng-Robinson -- 2.7 Soave-Redlich-Kwong -- 2.8 AQUAlibrium -- 2.9 Discussion -- 2.10 Conclusion -- References -- 3 On Transferring New Constant Pressure Heat Capacity Computation Methods to Engineering Practice -- 3.1 Introduction -- 3.2 Materials and Methods -- 3.3 Results and Discussion -- 3.4 Conclusions -- References -- 4 Developing High Precision Heat Capacity Correlations for Solids, Liquids and Ideal Gases -- 4.1 Introduction -- 4.2 Databases and Methods -- 4.3 Results and Discussion -- 4.4 Conclusion -- References -- 5 Method for Generating Shale Gas Fluid Composition from Depleted Sample -- 5.1 Introduction -- 5.2 Theory of Chemical Equilibrium Applied to Reservoir Fluids -- 5.3 Reservoir Fluid Composition from a Non-Representative Sample -- 5.3.1 Depleted Gas Condensate Samples -- 5.3.2 Samples from Tight Reservoirs -- 5.4 Numerical Examples -- 5.4.1 Depleted Gas Condensate Samples -- 5.4.2 Samples from Tight Reservoirs -- 5.5 Discussion of the Results -- 5.6 Conclusions -- 5.7 Nomenclature -- Greek letters -- Sub and super indices -- References -- 6 Phase Equilibrium in the Systems Hydrogen Sulfide + Methanol and Carbon Dioxide + Methanol -- 6.1 Introduction -- 6.2 Literature Review.
6.2.1 Hydrogen Sulfide + Methanol -- 6.2.2 Carbon Dioxide + Methanol -- 6.3 Modelling With Equations Of State -- 6.4 Nomenclature -- Greek -- References -- 7 Vapour-Liquid Equilibrium, Viscosity and Interfacial Tension Modelling of Aqueous Solutions of Ethylene Glycol or Triethylene Glycol in the Presence of Methane, Carbon Dioxide and Hydrogen Sulfide -- 7.1 Introduction -- 7.2 Results and Discussion -- 7.2.1 Experimental -- 7.2.2 Vapour Liquid Equilibrium and Phase Density Modeling -- 7.2.3 Liquid-Phase Viscosity Modeling -- 7.2.4 Interfacial Tension Modeling -- 7.2.5 Commercial Software Comparison -- 7.3 Conclusions -- 7.4 Nomenclature -- 7.5 Acknowledgement -- References -- Appendix 7.A -- Section 2: Process Engineering -- 8 Enhanced Gas Dehydration using Methanol Injection in an Acid Gas Compression System -- 8.1 Introduction -- 8.2 Methodology -- 8.2.1 Modeling Software -- 8.2.2 Simulation Setup -- 8.3 CASE I: 100 % CO2 -- 8.3.1 How Much to Dehydrate -- 8.3.2 Dehydration using Air Coolers -- 8.3.3 Methanol injection for hydrate suppression -- 8.3.4 Methanol Injection for Achieving 2:1 Water Content -- 8.3.5 DexPro™ for Achieving 2:1 Water Content -- 8.4 CASE II: 50 Percent CO2, 50 Percent H2S -- 8.4.1- How Much to Dehydrate? -- 8.4.2 Dehydration using Air Coolers -- 8.4.3 Methanol Injection for Hydrate Suppression -- 8.4.4 Methanol Injection for Achieving 2:1 Water Content -- 8.4.5 DexPro™ for Achieving 2:1 Water Content -- 8.5 CASE III: Enhanced Oil Recovery Composition -- 8.5.1 How Much to Dehydrate? -- 8.5.2 Enhanced Oil Recovery using Methanol -- 8.6 Conclusion -- 8.7 Additional Notes -- References -- 9 Comparison of the Design of CO2-capture Processes using Equilibrium and Rate Based Models -- 9.1 Introduction -- 9.2 VMG Rate Base -- 9.3 Rate Based Versus Equilibrium Based Models -- 9.3.1 Physical Absorption.
9.3.2 Isothermal Absorption with Chemical Reactions -- 9.4 Process Simulations -- 9.4.1 Configuration -- 9.4.2 Absorber -- 9.4.3 Absorber and Regenerator -- 9.4.4 Temperature Profile -- 9.5 Conclusions -- References -- 10 Post-Combustion Carbon Capture Using Aqueous Amines: A Mass-Transfer Study -- 10.1 Introduction -- 10.2 Mass Transfer Basics -- 10.3 Factors Influencing Mass Transfer -- 10.3.1 Concentration Driving Force -- 10.3.2 Reaction Rate Constant -- 10.3.3 Interfacial Area -- 10.4 Examples -- 10.4.1 Venturi/Spray Tower System -- 10.4.2 Amine Contactor with Pumparound -- 10.5 Summary -- References -- 11 BASF Technology for CO2 Capture and Regeneration -- 11.1 Introduction -- 11.2 Materials and Methods -- 11.2.1 HiPACTTM Laboratory Screening [4] -- 11.2.2 HiPACTTMPilot Plant [4] -- 11.2.3 HiPACTTM Demonstration Plant [5] -- 11.2.4 HiPACTTM Case Study [4,5] -- 11.2.5 OASETM blue Laboratory Screening [6, 7, 8, 9] -- 11.2.6 OASETM blue Miniplant [7, 9] -- 11.2.7 OASETM blue Pilot Plant: Niederaussem [7,8,10] -- 11.2.8 OASETM blue Case Study [1,2] -- 11.3 Results -- 11.3.1 HiPACTTMCO2 Capture Technology for Natural Gas Treating -- 11.3.2 HiPACTTMSolvent Stability and Losses -- 11.3.3 HiPACTTM Solvent CO2 Absorption Capacity and Kinetics -- 11.3.4 HiPACTTM Materials Compatibility -- 11.3.5 HiPACTTM Energy Requirements -- 11.3.6 HiPACTTM CO2 Stripping Pressure -- 11.3.7 HiPACTTM Economics -- 11.3.8 OASETM blue CO2 Capture Technology for Flue Gas Treating -- 11.3.9 OASETM blue Solvent Stability and Losses -- 11.3.10 OASETM blue Process Materials Compatibility -- 11.3.11 OASETM blue Solvent Capacity, Kinetics, Energy Requirements, and CO2 Stripping Pressure -- 11.3.12 OASETM blue Economics -- 11.3.13 OASETM blue Emissions -- 11.4 Conclusions -- 11.5 Acknowledgements and Disclaimer -- References.
12 Seven Deadly Sins of Filtration and Separation Systems in Gas Processing Operations -- 12.1 Gas Processing and Contamination Control -- 12.1.1 Feed and Effluent Separation -- 12.1.2 Unit Internal Separation -- 12.1.3 Seven Sins of Separation Devices in Gas Processing Facilities -- 12.2 The Seven Deadly Sins of Filtration and Separation Systems in Gas Processing Operations -- 12.2.1 Sin 1. Unsuitable Technology for the Application -- 12.2.2 Sin 2. Incorrect Compatibility (thermal, chemical, mechanical) -- 12.2.3 Sin 3. Deficient Vessel Design -- 12.2.4 Sin 4. Inappropriate Sealing Surfaces -- 12.2.5 Sin 5. Wrong Internals & -- Media -- 12.2.6 Sin 6. Lack of or Incorrect Maintenance Procedures -- 12.2.7 Sin 7. Instrumentation Deficiencies -- 12.3 Concluding Remarks -- Section 3: Acid Gas Injection -- 13 Development of Management Information System of Global Acid Gas Injection Projects -- 13.1 Background -- 13.2 Architecture of AGI-MIS -- 13.3 Data management -- 13.4 Data mining and information visualization -- 13.4.1 Injection formation -- 13.4.2 Pipeline -- 13.4.3 Injection rate -- 13.4.4 Leakage events -- 13.5 Interactive program -- 13.6 Conclusions -- 13.7 Acknowledgements -- References -- 14 Control and Prevention of Hydrate Formation and Accumulation in Acid Gas Injection Systems During Transient Pressure/Temperature Conditions -- 14.1 General Agi System Considerations -- 14.2 Composition And Properties Of Treated Acid Gases -- 14.3 Regulatory And Technical Restraints On Injection Pressures -- 14.4 Phase Equilibria, Hydrate Formation Boundaries And Prevention Of Hydrate Formation In Agi Systems -- 14.4.1 Hydrate Formation Conditions in AGI Compression Facilities -- 14.4.2 Hydrate Controls in AGI Compression Facilities -- 14.5 Formation, Remediation And Prevention Of Hydrate Formation During Unstable Injection Conditions -Three Case Studies.
14.5.1 Case 1: CO2 - rich TAG (90% CO2, 10%H2S) Injection into a 2,000 m Deep Clastic Reservoir -- 14.5.2 Case 2: CO2-Rich TAG (75% CO2, 25% H2S) Injected Into a 3050 m Deep Carbonate Reservoir -- 14.5.3 Case 3: CO2-Rich TAG (82% CO2, 18% H2S) Injected Into a 2950 m Deep Carbonate/Clastic Reservoir -- 14.6 Discussion And Conclusions -- References -- 15 Review of Mechanical Properties Related Problems for Acid Gas Injection -- 15.1 Introduction -- 15.2 Impact Elements -- 15.2.1 Well -- 15.2.2 Reservoir -- 15.2.3 Caprock -- 15.3 Coupled Processes -- 15.4 Failure Criteria -- 15.5 Conclusions -- 15.6 Acknowledgements -- References -- 16 Comparison of CO2 Storage Potential in Pyrolysed Coal Char of different Coal Ranks -- 16.1 Introduction -- 16.2 Apparatus, Methods, & -- Materials -- 16.2.1 Sample Characterization -- 16.3 Results And Discussion -- 16.3.1 Repeatability of adsorption experiments -- 16.3.2 Adsorption capacities of coal -- 16.3.3 Adsorption capacities of coal chars -- 16.3.4 Effect of temperature on blank test -- 16.4 Conclusion -- References -- Section 4: Carbon Dioxide Storage -- 17 Capture of CO2 and Storage in Depleted Gas Reservoirs in Alberta as Gas Hydrate -- 17.1 Experimental -- 17.2 Results And Discussion -- 17.3 Conclusions -- Reference -- 18 Geological Storage of CO2 as Hydrate in a McMurray Depleted Gas Reservoir -- 18.1 Introduction -- 18.2 Fundamentals -- 18.2.1 Gas Flow -- 18.2.2 Hydrate Phase Equilibrium -- 18.2.3 Assumptions -- 18.3 Reservoir -- 18.3.1 Geological Model -- 18.3.2 Base Case -- 18.4 Sensitivity Studies -- 18.4.1 Effect of the Injection Rate -- 18.4.2 Effect of the number of wells -- 18.4.3 Effect of the initial saturation of water -- 18.4.4 Effect of the heat removal -- 18.5 Long-term storage -- 18.6 Summary and conclusions -- 18.7 Acknowledgements -- References -- Section 5: Reservoir Engineering.
19 A Modified Calculation Method for the Water Coning Simulation Mode in Oil Reservoirs with Bottom Water Drive.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.