ORPP logo
Image from Google Jackets

The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds. (MN-44), Volume 44.

By: Material type: TextTextSeries: Mathematical Notes SeriesPublisher: Princeton : Princeton University Press, 1995Copyright date: ©1996Edition: 1st edDescription: 1 online resource (138 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781400865161
Subject(s): Genre/Form: Additional physical formats: Print version:: The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds. (MN-44), Volume 44DDC classification:
  • 514/.2
LOC classification:
  • QA613.2 -- .M67 1996eb
Online resources:
Contents:
Cover -- Title -- Copyright -- Contents -- 1 Introduction -- 2 Clifford Algebras and Spin Groups -- 2.1 The Clifford Algebras -- 2.2 The groups Pin(V) and Spin(V) -- 2.3 Splitting of the Clifford Algebra -- 2.4 The complexification of the Cl(V) -- 2.5 The Complex Spin Representation -- 2.6 The Group Spin^c(V) -- 3 Spin Bundles and the Dirac Operator -- 3.1 Spin Bundles and Clifford Bundles -- 3.2 Connections and Curvature -- 3.3 The Dirac Operator -- 3.4 The Case of Complex Manifolds -- 4 The Seiberg-Witten Moduli Space -- 4.1 The Equations -- 4.2 Space of Configurations -- 4.3 Group of Changes of Gauge -- 4.4 The Action -- 4.5 The Quotient Space -- 4.6 The Elliptic Complex -- 5 Curvature Identities and Bounds -- 5.1 Curvature Identities -- 5.2 A Priori bounds -- 5.3 The Compactness of the Moduli Space -- 6 The Seiberg-Witten Invariant -- 6.1 The Statement -- 6.2 The Parametrized Moduli Space -- 6.3 Reducible Solutions -- 6.4 Compactness of the Perturbed Moduli Space -- 6.5 Variation of the Metric and Self-dual Two-form -- 6.6 Orientability of the Moduli Space -- 6.7 The Case when b^+2(X) &gt -- 1 -- 6.8 An Involution in the Theory -- 6.9 The Case when b^+2(X) = 1 -- 7 Invariants of Kähler Surfaces -- 7.1 The Equations over a Kähler Manifold -- 7.2 Holomorphic Description of the Moduli Space -- 7.3 Evaluation for Kähler Surfaces -- 7.4 Computation for Kähler Surfaces -- 7.5 Final Remarks -- Bibliography.
Summary: No detailed description available for "The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds. (MN-44), Volume 44".
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title -- Copyright -- Contents -- 1 Introduction -- 2 Clifford Algebras and Spin Groups -- 2.1 The Clifford Algebras -- 2.2 The groups Pin(V) and Spin(V) -- 2.3 Splitting of the Clifford Algebra -- 2.4 The complexification of the Cl(V) -- 2.5 The Complex Spin Representation -- 2.6 The Group Spin^c(V) -- 3 Spin Bundles and the Dirac Operator -- 3.1 Spin Bundles and Clifford Bundles -- 3.2 Connections and Curvature -- 3.3 The Dirac Operator -- 3.4 The Case of Complex Manifolds -- 4 The Seiberg-Witten Moduli Space -- 4.1 The Equations -- 4.2 Space of Configurations -- 4.3 Group of Changes of Gauge -- 4.4 The Action -- 4.5 The Quotient Space -- 4.6 The Elliptic Complex -- 5 Curvature Identities and Bounds -- 5.1 Curvature Identities -- 5.2 A Priori bounds -- 5.3 The Compactness of the Moduli Space -- 6 The Seiberg-Witten Invariant -- 6.1 The Statement -- 6.2 The Parametrized Moduli Space -- 6.3 Reducible Solutions -- 6.4 Compactness of the Perturbed Moduli Space -- 6.5 Variation of the Metric and Self-dual Two-form -- 6.6 Orientability of the Moduli Space -- 6.7 The Case when b^+2(X) &gt -- 1 -- 6.8 An Involution in the Theory -- 6.9 The Case when b^+2(X) = 1 -- 7 Invariants of Kähler Surfaces -- 7.1 The Equations over a Kähler Manifold -- 7.2 Holomorphic Description of the Moduli Space -- 7.3 Evaluation for Kähler Surfaces -- 7.4 Computation for Kähler Surfaces -- 7.5 Final Remarks -- Bibliography.

No detailed description available for "The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds. (MN-44), Volume 44".

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.