ORPP logo
Image from Google Jackets

Numerical Simulation of Multiphase Reactors with Continuous Liquid Phase.

By: Contributor(s): Material type: TextTextPublisher: San Diego : Elsevier Science & Technology, 2014Copyright date: ©2014Edition: 1st edDescription: 1 online resource (322 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780124115798
Subject(s): Genre/Form: Additional physical formats: Print version:: Numerical Simulation of Multiphase Reactors with Continuous Liquid PhaseDDC classification:
  • 660.2832015118
LOC classification:
  • TA357.5.M84.Y364 20
Online resources:
Contents:
Cover -- Title page -- Copyright page -- Contents -- Preface -- About the Authors -- Chapter 1 - Introduction -- Chapter 2 - Fluid flow and mass transfer on particle scale -- 2.1 - Introduction -- 2.2 - Theoretical basis -- 2.2.1 - Fluid mechanics -- 2.2.2 - Mass transfer -- 2.2.3 - Interfacial force balance -- 2.2.4 - Interfacial mass transport -- 2.3 - Numerical methods -- 2.3.1 - Orthogonal boundary-fitted coordinate system -- 2.3.1.1 - Stream function-vorticity formulation -- 2.3.1.2 - Convective transport equation -- 2.3.1.3 - Numerical solution procedure -- 2.3.2 - Level set method -- 2.3.2.1 - Level set method for fluid flow -- 2.3.2.2 - Level set method for mass transfer -- 2.3.2.3 - Numerical solution procedure -- 2.3.3 - Mirror fluid method -- 2.4 - Buoyancy-driven motion and mass transfer of a single particle -- 2.4.1 - Drop, bubble and solid particle motion -- 2.4.1.1 - Bubble/drop formation -- 2.4.1.2 - Unsteady and steady motion -- 2.4.1.3 - Coalescence -- 2.4.1.4 - Bubbles and drops in a non-Newtonian fluid -- 2.4.1.5 - Simulation of solid particle motion by the mirror fluid method -- 2.4.2 - Mass transfer to/from a drop -- 2.5 - Mass transfer-induced Marangoni effect -- 2.5.1 - Solute-induced Marangoni effect -- 2.5.2 - Effect of surfactant on drop motion and mass transfer -- 2.5.2.1 - Formulation -- 2.5.2.2 - Effect of surfactant on drop motion -- 2.5.2.3 - Effect of surfactant on mass transfer -- 2.5.2.3.1 - Hydrodynamic effect on transient mass transfer -- 2.5.2.3.2 - Effect of interfacial resistance on transient mass transfer -- 2.5.3 - Surfactant-induced Marangoni effect -- 2.6 - Behavior of particle swarms -- 2.6.1 - Introduction -- 2.6.2 - Forces on single particles -- 2.6.2.1 - Drag force -- 2.6.2.2 - Unsteady forces -- 2.6.2.3 - Lift force -- 2.6.3 - Cell model -- 2.7 - Single particles in shear flow and extensional flow.
2.7.1 - Mass/heat transfer from a spherical particle in extensional flow -- 2.7.1.1 - Steady transport -- 2.7.1.2 - Unsteady transport -- 2.7.2 - Flow and transport from a sphere in simple shear flow -- 2.7.2.1 - Flow field -- 2.7.2.2 - Mass/heat transfer -- 2.8 - Summary and perspective -- 2.8.1 - Summary -- 2.8.2 - Perspective -- Nomenclature -- References -- Chapter 3 - Multiphase stirred reactors -- 3.1 - Introduction -- 3.2 - Mathematical models and numerical methods -- 3.2.1 - Governing equations -- 3.2.2 - Interphase momentum exchange -- 3.2.3 - RANS method -- 3.2.3.1 - k-ε model -- 3.2.3.2 - EASM -- 3.2.4 - LES model -- 3.2.5 - Impeller treatment -- 3.2.5.1 - "Black box" model -- 3.2.5.2 - Snapshot method -- 3.2.5.3 - Inner-outer iteration (IO) -- 3.2.5.4 - Multiple reference frame (MRF) -- 3.2.5.5 - Sliding mesh (SM) -- 3.2.5.6 - Methods to deal with axial flow impellers -- Vector distance method -- Mirror fluid method (MFM) -- 3.2.6 - Numerical details -- 3.2.6.1 - Discretization of partial differential equations -- 3.2.6.2 - Boundary conditions -- 3.3 - Two-phase flow in stirred tanks -- 3.3.1 - Solid-liquid systems -- 3.3.1.1 - Suspension of solid particles -- 3.3.1.2 - Flow field -- 3.3.1.3 - Distribution of solid particles and cloud height -- 3.3.1.4 - Solid hydrodynamics and liquid-phase turbulence -- 3.3.2 - Gas-liquid systems -- 3.3.2.1 - Flow field and energy dissipation -- 3.3.2.2 - Gas holdup and flooding -- 3.3.2.3 - Bubble size distribution and mass transfer -- 3.3.2.4 - Surface aerated stirred tank -- 3.3.3 - Liquid-liquid systems -- 3.3.3.1 - Interphase drag force -- 3.3.3.2 - Evaluation of drop size -- Uniform drop size -- Empirical correlations -- Population balance equation -- 3.4 - Three-phase flow in stirred tanks -- 3.4.1 - Liquid-liquid-solid systems -- 3.4.1.1 - Experimental measurements.
3.4.1.2 - Numerical simulation -- 3.4.2 - Gas-liquid-liquid systems -- 3.4.3 - Liquid-liquid-liquid systems -- 3.4.4 - Gas-liquid-solid systems -- 3.5 - Summary and perspective -- 3.5.1 - Summary -- 3.5.2 - Perspective -- Nomenclature -- References -- Chapter 4 - Airlift loop reactors -- 4.1 - Introduction -- 4.2 - Flow regime identification -- 4.3 - Mathematical models and numerical methods -- 4.3.1 - Eulerian-Eulerian two-fluid model -- 4.3.2 - Closure of interfacial forces -- 4.3.2.1 - Pressure force and gravity force -- 4.3.2.2 - Drag force -- 4.3.2.3 - Turbulent dispersion force -- 4.3.2.4 - Transversal or lift force -- 4.3.2.5 - Wall lubrication force -- 4.3.2.6 - Added mass force -- 4.3.3 - Closure of turbulence models -- 4.3.4 - Numerical methods -- 4.3.4.1 - Unified high-order convection schemes -- 4.3.4.2 - Conservation of gas fraction with high-order schemes -- 4.3.4.3 - Decoupling algorithms -- 4.3.4.4 Improved boundary conditions for steady simulation -- 4.4 - Hydrodynamics and transport in airlift loop reactors -- 4.4.1 - Hydrodynamic behavior -- 4.4.2 - Interphase transport phenomena -- 4.5 - Macromixing and micromixing -- 4.5.1 - Macromixing in airlift loop reactors -- 4.5.1.1 - Experimental investigation of macromixing -- 4.5.1.2 - Mathematical models of macromixing -- 4.5.2 - Micromixing in airlift loop reactors -- 4.5.2.1 - Experimental investigation of micromixing -- 4.5.2.2 - Mathematical models for micromixing -- 4.6 - Guidelines for design and scale-up of airlift loop reactors -- 4.7 - Summary and perspective -- Nomenclature -- References -- Chapter 5 - Preliminary investigation of two-phase microreactors -- 5.1 - Introduction -- 5.2 - Mathematical models and numerical methods -- 5.3 - Simulation using lattice Boltzmann method -- 5.3.1 - Numerical simulation of two-phase flow in microchannels.
5.3.2 - Numerical study of heat transfer in microchannels -- 5.3.3 - Numerical simulation of mass transfer in microchannels -- 5.4 - Experimental -- 5.4.1 - Flow pattern -- 5.4.2 - Pressure drop -- 5.4.3 - Mass transfer performance -- 5.4.4 - Micromixing -- 5.5 - Summary and perspective -- Nomenclature -- References -- Chapter 6 - Crystallizers: CFD-PBE modeling -- 6.1 - Introduction -- 6.2 - Mathematical models and numerical methods -- 6.2.1 - General population balance equation -- 6.2.2 - Standard method of moments -- 6.2.3 - Quadrature method of moments -- 6.2.4 - Multi-class method or discretized method -- 6.3 - Crystallizer modeling procedures -- 6.3.1 - Species transport equations -- 6.3.2 - Nucleation and growth kinetics -- 6.3.3 - Aggregation and breakage kernels -- 6.3.4 - Computational details -- 6.3.5 - Simulated results of precipitation processes -- 6.4 - Macromixing and micromixing -- 6.5 - Summary and perspective -- Nomenclature -- References -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title page -- Copyright page -- Contents -- Preface -- About the Authors -- Chapter 1 - Introduction -- Chapter 2 - Fluid flow and mass transfer on particle scale -- 2.1 - Introduction -- 2.2 - Theoretical basis -- 2.2.1 - Fluid mechanics -- 2.2.2 - Mass transfer -- 2.2.3 - Interfacial force balance -- 2.2.4 - Interfacial mass transport -- 2.3 - Numerical methods -- 2.3.1 - Orthogonal boundary-fitted coordinate system -- 2.3.1.1 - Stream function-vorticity formulation -- 2.3.1.2 - Convective transport equation -- 2.3.1.3 - Numerical solution procedure -- 2.3.2 - Level set method -- 2.3.2.1 - Level set method for fluid flow -- 2.3.2.2 - Level set method for mass transfer -- 2.3.2.3 - Numerical solution procedure -- 2.3.3 - Mirror fluid method -- 2.4 - Buoyancy-driven motion and mass transfer of a single particle -- 2.4.1 - Drop, bubble and solid particle motion -- 2.4.1.1 - Bubble/drop formation -- 2.4.1.2 - Unsteady and steady motion -- 2.4.1.3 - Coalescence -- 2.4.1.4 - Bubbles and drops in a non-Newtonian fluid -- 2.4.1.5 - Simulation of solid particle motion by the mirror fluid method -- 2.4.2 - Mass transfer to/from a drop -- 2.5 - Mass transfer-induced Marangoni effect -- 2.5.1 - Solute-induced Marangoni effect -- 2.5.2 - Effect of surfactant on drop motion and mass transfer -- 2.5.2.1 - Formulation -- 2.5.2.2 - Effect of surfactant on drop motion -- 2.5.2.3 - Effect of surfactant on mass transfer -- 2.5.2.3.1 - Hydrodynamic effect on transient mass transfer -- 2.5.2.3.2 - Effect of interfacial resistance on transient mass transfer -- 2.5.3 - Surfactant-induced Marangoni effect -- 2.6 - Behavior of particle swarms -- 2.6.1 - Introduction -- 2.6.2 - Forces on single particles -- 2.6.2.1 - Drag force -- 2.6.2.2 - Unsteady forces -- 2.6.2.3 - Lift force -- 2.6.3 - Cell model -- 2.7 - Single particles in shear flow and extensional flow.

2.7.1 - Mass/heat transfer from a spherical particle in extensional flow -- 2.7.1.1 - Steady transport -- 2.7.1.2 - Unsteady transport -- 2.7.2 - Flow and transport from a sphere in simple shear flow -- 2.7.2.1 - Flow field -- 2.7.2.2 - Mass/heat transfer -- 2.8 - Summary and perspective -- 2.8.1 - Summary -- 2.8.2 - Perspective -- Nomenclature -- References -- Chapter 3 - Multiphase stirred reactors -- 3.1 - Introduction -- 3.2 - Mathematical models and numerical methods -- 3.2.1 - Governing equations -- 3.2.2 - Interphase momentum exchange -- 3.2.3 - RANS method -- 3.2.3.1 - k-ε model -- 3.2.3.2 - EASM -- 3.2.4 - LES model -- 3.2.5 - Impeller treatment -- 3.2.5.1 - "Black box" model -- 3.2.5.2 - Snapshot method -- 3.2.5.3 - Inner-outer iteration (IO) -- 3.2.5.4 - Multiple reference frame (MRF) -- 3.2.5.5 - Sliding mesh (SM) -- 3.2.5.6 - Methods to deal with axial flow impellers -- Vector distance method -- Mirror fluid method (MFM) -- 3.2.6 - Numerical details -- 3.2.6.1 - Discretization of partial differential equations -- 3.2.6.2 - Boundary conditions -- 3.3 - Two-phase flow in stirred tanks -- 3.3.1 - Solid-liquid systems -- 3.3.1.1 - Suspension of solid particles -- 3.3.1.2 - Flow field -- 3.3.1.3 - Distribution of solid particles and cloud height -- 3.3.1.4 - Solid hydrodynamics and liquid-phase turbulence -- 3.3.2 - Gas-liquid systems -- 3.3.2.1 - Flow field and energy dissipation -- 3.3.2.2 - Gas holdup and flooding -- 3.3.2.3 - Bubble size distribution and mass transfer -- 3.3.2.4 - Surface aerated stirred tank -- 3.3.3 - Liquid-liquid systems -- 3.3.3.1 - Interphase drag force -- 3.3.3.2 - Evaluation of drop size -- Uniform drop size -- Empirical correlations -- Population balance equation -- 3.4 - Three-phase flow in stirred tanks -- 3.4.1 - Liquid-liquid-solid systems -- 3.4.1.1 - Experimental measurements.

3.4.1.2 - Numerical simulation -- 3.4.2 - Gas-liquid-liquid systems -- 3.4.3 - Liquid-liquid-liquid systems -- 3.4.4 - Gas-liquid-solid systems -- 3.5 - Summary and perspective -- 3.5.1 - Summary -- 3.5.2 - Perspective -- Nomenclature -- References -- Chapter 4 - Airlift loop reactors -- 4.1 - Introduction -- 4.2 - Flow regime identification -- 4.3 - Mathematical models and numerical methods -- 4.3.1 - Eulerian-Eulerian two-fluid model -- 4.3.2 - Closure of interfacial forces -- 4.3.2.1 - Pressure force and gravity force -- 4.3.2.2 - Drag force -- 4.3.2.3 - Turbulent dispersion force -- 4.3.2.4 - Transversal or lift force -- 4.3.2.5 - Wall lubrication force -- 4.3.2.6 - Added mass force -- 4.3.3 - Closure of turbulence models -- 4.3.4 - Numerical methods -- 4.3.4.1 - Unified high-order convection schemes -- 4.3.4.2 - Conservation of gas fraction with high-order schemes -- 4.3.4.3 - Decoupling algorithms -- 4.3.4.4 Improved boundary conditions for steady simulation -- 4.4 - Hydrodynamics and transport in airlift loop reactors -- 4.4.1 - Hydrodynamic behavior -- 4.4.2 - Interphase transport phenomena -- 4.5 - Macromixing and micromixing -- 4.5.1 - Macromixing in airlift loop reactors -- 4.5.1.1 - Experimental investigation of macromixing -- 4.5.1.2 - Mathematical models of macromixing -- 4.5.2 - Micromixing in airlift loop reactors -- 4.5.2.1 - Experimental investigation of micromixing -- 4.5.2.2 - Mathematical models for micromixing -- 4.6 - Guidelines for design and scale-up of airlift loop reactors -- 4.7 - Summary and perspective -- Nomenclature -- References -- Chapter 5 - Preliminary investigation of two-phase microreactors -- 5.1 - Introduction -- 5.2 - Mathematical models and numerical methods -- 5.3 - Simulation using lattice Boltzmann method -- 5.3.1 - Numerical simulation of two-phase flow in microchannels.

5.3.2 - Numerical study of heat transfer in microchannels -- 5.3.3 - Numerical simulation of mass transfer in microchannels -- 5.4 - Experimental -- 5.4.1 - Flow pattern -- 5.4.2 - Pressure drop -- 5.4.3 - Mass transfer performance -- 5.4.4 - Micromixing -- 5.5 - Summary and perspective -- Nomenclature -- References -- Chapter 6 - Crystallizers: CFD-PBE modeling -- 6.1 - Introduction -- 6.2 - Mathematical models and numerical methods -- 6.2.1 - General population balance equation -- 6.2.2 - Standard method of moments -- 6.2.3 - Quadrature method of moments -- 6.2.4 - Multi-class method or discretized method -- 6.3 - Crystallizer modeling procedures -- 6.3.1 - Species transport equations -- 6.3.2 - Nucleation and growth kinetics -- 6.3.3 - Aggregation and breakage kernels -- 6.3.4 - Computational details -- 6.3.5 - Simulated results of precipitation processes -- 6.4 - Macromixing and micromixing -- 6.5 - Summary and perspective -- Nomenclature -- References -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.