Application of Nanotechnology in Water Research.
Material type:
- text
- computer
- online resource
- 9781118939291
- 628.164
- TD442.5 -- .A67 2014eb
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1: General -- 1 Nanotechnology and Water: Ethical and Regulatory Considerations -- 1.1 Introduction -- 1.2 Ethics and Nanotechnology -- 1.2.1 What Is Ethics? -- 1.2.2 What Is an Ethical Issue? -- 1.2.3 Basic Principles in Ethical Decision Making -- 1.2.3.1 Utility -- 1.2.3.2 Fairness -- 1.2.3.3 Justice -- 1.2.3.4 Proper Human Excellences -- 1.2.3.5 Beneficence -- 1.2.4 Significance of Nanotechnology in the Water Sector -- 1.2.5 Benefits of Nanotechnology -- 1.2.6 Ethical Issues and Concerns Related to Application of Nanotechnology in the Water Sector -- 1.2.6.1 Issues of Safety, Toxicity and Environmental Impact -- 1.2.6.2 Distributive Justice Issues -- 1.2.6.3 Intellectual Property Rights Issues -- 1.2.6.4 Public Involvement and Consumer Awareness -- 1.3 Legal and Regulatory Issues and Concerns Related to the Application of Nanotechnology in the Water Sector -- 1.3.1 The EC's Code of Conduct for Responsible Nanoscience and Nanotechnology Research and Other Initiatives -- 1.3.2 The Precautionary Principle -- 1.4 Nanotechnology, Water and Human Health Research -- 1.5 Conclusion -- References -- 2 Nanoparticles Released into Water Systems from Nanoproducts and Structural Nanocomposites Applications -- 2.1 Introduction -- 2.2 Case Study on Polyurethane/Organically-Modified Montmorillonite (PU/OMMT) Nanofoam Nanoparticles in Water Suspension -- 2.3 Methodology -- 2.3.1 Material Synthesis of Nanophased Composites -- 2.3.2 Drop-Weight Impact Test and Fracture Particle Extraction -- 2.3.3 Characterization -- 2.3.3.1 Scanning Electron Microscopy (SEM) -- 2.3.3.2 Transmission Electron Microscopy (TEM) -- 2.3.3.3 X-ray Diffraction -- 2.3.3.4 Dynamic Light Scattering (DLS) -- 2.4 Results and Discussion -- 2.4.1 Synthesized Nanocomposites.
2.4.2 Generated Nanocomposite Dust from Impact Test -- 2.4.2.1 Morphology Studies -- 2.4.2.2 Size Effect -- 2.5 Conclusion -- Acknowledgement -- References -- Part 2: Remediation -- 3 Prospects for Immobilization of Microbial Sorbents on Carbon Nanotubes for Biosorption: Bioremediation of Heavy Metals Polluted Water -- 3.1 Dispersion of Metal Pollutants in Water Sources -- 3.2 Removal of Metal by Conventional Methods -- 3.3 Microbial Sorbents for Removal of Toxic Heavy Metals from Water -- 3.3.1 Biouptake of Metal -- 3.3.2 Factors Affecting Microbial Adsorption Capacity -- 3.3.2.1 Cell Age -- 3.3.2.2 Physicochemical Effect -- 3.3.2.3 Cell Biomass -- 3.3.2.4 Initial Concentration of Metal -- 3.3.2.5 Metals Competition -- 3.3.2.6 Exposure Time -- 3.3.3 Isothermic and Kinetic Equilibrium of Biosorption -- 3.3.4 Drawbacks Due to Inhibition -- 3.3.5 Metal Tolerance Mechanisms of Microbial Sorbents -- 3.3.6 Pretreatment of Microbial Sorbent -- 3.4 Immobilization of Microbial Sorbents on CNTs -- 3.4.1 Possible Interaction between Microorganisms and CNTs -- 3.4.1.1 Microbial Cell Membranes and Functional Groups -- 3.4.1.2 Characteristics of CNTs -- 3.4.2 Adsorption of Microorganisms on CNTs for Bioremediation -- 3.5 Conclusion -- References -- 4 Plasma Technology: A New Remediation for Water Purification with or without Nanoparticles -- 4.1 Introduction -- 4.2 Water Purification Using Advanced Oxidation Processes (AOP) -- 4.3 Nanoparticle Synthesis Using Plasma and Its Application towards Water Purification -- 4.4 Application of Plasma for Water Purification -- 4.5 Combined Action of Nanoparticles and Plasma for Water Purification -- 4.6 Conclusion -- References -- 5 Polysaccharide-Based Nanosorbents in Water Remediation -- 5.1 Introduction -- 5.2 Water Pollution -- 5.2.1 Microbiological Contamination -- 5.2.2 Natural Organic Matter.
5.2.3 Organic Pollutants -- 5.2.4 Anionic Pollutants -- 5.2.5 Metallic Contamination (Heavy Metal Toxicity) -- 5.3 Hazardous Effects of Toxic Metal Ions -- 5.3.1 Chromium -- 5.3.2 Cadmium -- 5.3.3 Arsenic -- 5.3.4 Mercury -- 5.4 Technologies for Water Remediation -- 5.4.1 Oxidation and Reduction -- 5.4.2 Coagulation and Filtration -- 5.4.3 Lime Softening -- 5.4.4 Membrane Processes -- 5.5 Shortcomings of the Technologies Used for Water Remediation -- 5.6 Nanotechnology -- 5.6.1 Approaches for the Preparation of Nanomaterials -- 5.6.2 Composition of Nanomaterials -- 5.6.3 Nanotechnology in the Field of Water Remediation -- 5.6.3.1 Carbon Nanotubes -- 5.6.3.2 Dendrimers -- 5.6.3.3 Polysaccharide-Based Nanoparticles -- 5.7 Polysaccharides -- 5.7.1 Classification of Polysaccharides -- 5.7.1.1 Storage Polysaccharides -- 5.7.1.2 Structural Polysaccharides -- 5.7.1.3 Heteropolysaccharides -- 5.7.1.4 Homopolysaccharides -- 5.7.2 Preparation of Polymeric (Polysaccharide-Based) Nanoparticles -- 5.7.2.1 Covalent Crosslinking -- 5.7.2.2 Ionic Crosslinking -- 5.7.2.3 Polysaccharide Nanoparticles by Polyelectrolyte Complexation (PEC) -- 5.7.2.4 Self-Assembly of Hydrophobically-Modified Polysaccharides -- 5.7.3 Some Examples of Polysaccharides -- 5.7.3.1 Alginate -- 5.7.3.2 Chitosan -- 5.7.3.3 Guar Gum -- 5.7.3.4 Poly-γ-Glutamic (γ -PGA) -- 5.7.3.5 Starch -- 5.7.3.6 Tamarind Xyloglucan -- 5.7.3.7 Cellulose -- 5.7.3.8 Murein -- 5.7.3.9 Pectins -- 5.7.3.10 Dextrans -- 5.7.3.11 Glycogen -- 5.7.3.12 Gellan gum -- 5.7.3.13 Xanthan -- 5.8 Advantages of Using Polysaccharides for Removal of Toxic Metal Ions -- 5.9 Brief Review of the Work Done -- References -- Part 3: Membranes & -- Carbon Nanotubes -- 6 The Use of Carbonaceous Nanomembrane Filter for Organic Waste Removal -- 6.1 Introduction -- 6.2 Organic Wastes and Organic Pollutant -- 6.3 Low-Cost Adsorbents.
6.4 Heavy Metals -- 6.4.1 Iron -- 6.4.2 Nickel -- 6.4.3 Copper -- 6.4.4 Chromium -- 6.4.5 Cadmium -- 6.4.6 Lead and Mercury -- 6.4.7 Gold, Silver and Palladium (Au, Ag and Pd) -- 6.5 Composite Materials -- 6.5.1 Inorganic Composite Materials -- 6.5.2 Synthetic Organic Composite Materials -- 6.5.3 Organic-Inorganic Hybrid Composite Materials -- 6.5.4 Mesoporous Organic-Inorganic Hybrid Materials -- 6.6 Carbonaceous Materials -- 6.6.1 Graphite -- 6.6.2 Glassy Carbon -- 6.6.3 Acetylene Black -- 6.6.4 Diamond -- 6.6.5 Carbon Nanofibers -- 6.6.6 Carbon Nanotubes -- 6.6.6.1 Chemical Modification/Functionalization of Carbon Nanotubes -- 6.6.6.2 Interaction and Functionalization of Carbon Nanotubes with Biological Molecules -- 6.6.6.3 Application of Biofunctionalized Carbon Nanotubes -- 6.6.6.4 Biosensing -- 6.7 Experimental -- 6.7.1 Material Synthesis of Different Types of Wastes -- 6.7.1.1 Waste Materials for Environment or Pollutants -- 6.8 Nanomaterials -- 6.8.1 Importance of Nanomaterials and Their Characterizations -- 6.8.2 Importance of Inexpensive Nanomaterial in Wastewater Treatment -- 6.8.3 Wastes for Wastewater Treatment -- 6.8.4 Technology Used for Wastewater Treatment -- 6.8.4.1 Reverse Osmosis -- 6.8.4.2 Nanofiltration -- 6.8.4.3 Ultrafiltration -- 6.8.4.4 Microfiltration -- 6.9 Summary and Future Directions -- References -- 7 Carbon Nanotubes in the Removal of Heavy Metal Ions from Aqueous Solution -- 7.1 Introduction -- 7.2 Synthesis of CNTs -- 7.3 Functionalization of Carbon Nanotubes -- 7.3.1 Attaching Acid Functional Groups -- 7.3.2 Fluorination -- 7.3.3 Hydrogenation -- 7.3.4 Cycloadditions -- 7.3.5 Amidation/Esterification Reactions -- 7.3.6 Grafting of Polymers -- 7.3.7 Other Reactions -- 7.4 Adsorption of Heavy Metal Ions on Carbon Nanotubes -- 7.4.1 Adsorption of Cd(II) -- 7.4.2 Adsorption of Cr(VI) -- 7.4.3 Adsorption of Cu(II).
7.4.4 Adsorption of Ni(II) -- 7.4.5 Adsorption of Pb(II) -- 7.4.6 Adsorption of Zn(II) -- 7.5 Competitive Adsorption -- 7.6 Summary and Conclusion -- References -- 8 Application of Carbon Nanotube-Polymer Composites and Carbon Nanotube-Semiconductor Hybrids in Water Treatment -- 8.1 Introduction -- 8.2 Classification of Dyes -- 8.2.1 Effects of Dyes in the Aquatic Medium -- 8.3 Conventional Treatment Technologies for Textile Effluent -- 8.3.1 Biological Methods -- 8.3.2 Physical/Physiochemical Methods -- 8.3.2.1 Adsorption Processes -- 8.3.3 Chemical Methods -- 8.3.3.1 Principles of Semiconductor Photocatalysis -- 8.3.3.2 Carbon Nanotube-Based Photocatalysts -- 8.4 Conclusion -- Acknowledgements -- References -- 9 Advances in Nanotechnologies for Point-of-Use and Point-of-Entry Water Purification -- 9.1 Introduction -- 9.2 Nanotechnology-Enabled POU/POE Systems for Drinking Water Treatment -- 9.3 Absorptive Nanocomposites Polymers Based on Cyclodextrins -- 9.3.1 Background -- 9.3.2 Synthesis and Properties of Cyclodextrin-Based Polymers -- 9.3.3 Application of CD-Based Nanocomposite Polymers in the Removal of Heavy Metals and Microbials from Water -- 9.4 Nanotechnology-Based Membrane Filtration -- 9.4.1 Background -- 9.4.2 Procedures for Membrane Fabrication -- 9.4.3 Mixed Matrix Membranes -- 9.4.4 Composite Membranes and Nanomembranes -- 9.4.5 Nanomaterials in Membrane Fabrication -- 9.4.6 Application of CNTs in Membrane Production -- 9.4.7 Nanotechnology-Based Membranes for POU/POE Use -- 9.4.8 Removal of Heavy Metals, Organometallics, Metalloids Using Nanomembranes -- 9.5 Ceramic-Based Filters and Nanofibers -- 9.5.1 Polymer-Clay Nanocomposites in Heavy Metal Removal from Water -- 9.5.2 Polymer-Clay Nanocomposite Formation -- 9.5.3 Application of Nanofibers in Drinking Water Purification -- 9.6 Challenges and Opportunities -- 9.6.1 Challenges.
9.6.2 Opportunities.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.