Innovation in Wind Turbine Design.
Material type:
- text
- computer
- online resource
- 9781119137948
- 621.4/5
- TJ828 .J365 2018
Intro -- Title Page -- Copyright -- Table of Contents -- Dedication -- Foreword -- Preface -- Acknowledgement -- Introduction -- 0.1 Why Innovation? -- 0.2 The Challenge of Wind -- 0.3 The Specification of a Modern Wind Turbine -- 0.4 The Variability of the Wind -- 0.5 Early Electricity-Generating Wind Turbines -- 0.6 Commercial Wind Technology -- 0.7 Basis of Wind Technology Evaluation -- 0.8 Competitive Status of Wind Technology -- References -- Part I: Design Background -- Chapter 1: Rotor Aerodynamic Theory -- 1.1 Introduction -- 1.2 Aerodynamic Lift -- 1.3 Power in the Wind -- 1.4 The Actuator Disc Concept -- 1.5 Open Flow Actuator Disc -- 1.6 Why a Rotor? -- 1.7 Actuator Disc in Augmented Flow and Ducted Rotor Systems -- 1.8 Blade Element Momentum Theory -- 1.9 Optimum Rotor Design -- 1.10 Limitations of Actuator Disc and BEM Theory -- References -- Chapter 2: Rotor Aerodynamic Design -- 2.1 Optimum Rotors and Solidity -- 2.2 Rotor Solidity and Ideal Variable Speed Operation -- 2.3 Solidity and Loads -- 2.4 Aerofoil Design Development -- 2.5 Sensitivity of Aerodynamic Performance to Planform Shape -- 2.6 Aerofoil Design Specification -- 2.7 Aerofoil Design for Large Rotors -- References -- Chapter 3: Rotor Structural Interactions -- 3.1 Blade Design in General -- 3.2 Basics of Blade Structure -- 3.3 Simplified Cap Spar Analyses -- 3.4 The Effective t/c Ratio of Aerofoil Sections -- 3.5 Blade Design Studies: Example of a Parametric Analysis -- 3.6 Industrial Blade Technology -- References -- Chapter 4: Upscaling of Wind Turbine Systems -- 4.1 Introduction: Size and Size Limits -- 4.2 The 'Square-Cube' Law -- 4.3 Scaling Fundamentals -- 4.4 Similarity Rules for Wind Turbine Systems -- 4.5 Analysis of Commercial Data -- 4.6 Upscaling of VAWTs -- 4.7 Rated Tip Speed -- 4.8 Upscaling of Loads -- 4.9 Violating Similarity -- 4.10 Cost Models.
4.11 Scaling Conclusions -- References -- Chapter 5: Wind Energy Conversion Concepts -- References -- Chapter 6: Drive-Train Design -- 6.1 Introduction -- 6.2 Definitions -- 6.3 Objectives of Drive-Train Innovation -- 6.4 Drive-Train Technology Maps -- 6.5 Direct Drive -- 6.6 Hybrid Systems -- 6.7 Geared Systems - the Planetary Gearbox -- 6.8 Drive Trains with Differential Drive -- 6.9 Hydraulic Transmission -- 6.10 Efficiency of Drive-Train Components -- 6.11 Drive-Train Dynamics -- 6.12 The Optimum Drive Train -- 6.13 Innovative Concepts for Power Take-Off -- References -- Chapter 7: Offshore Wind Technology -- 7.1 Design for Offshore -- 7.2 High-Speed Rotor -- 7.3 'Simpler' Offshore Turbines -- 7.4 Rating of Offshore Wind Turbines -- 7.5 Foundation and Support Structure Design -- 7.6 Electrical Systems of Offshore Wind Farms -- 7.7 Operations and Maintenance (O& -- M) -- 7.8 Offshore Floating Wind Turbines -- References -- Chapter 8: Future Wind Technology -- 8.1 Evolution -- 8.2 Present Trends - Consensus in Blade Number and Operational Concept -- 8.3 Present Trends - Divergence in Drive-Train Concepts -- 8.4 Future Wind Technology - Airborne -- 8.5 Future Wind Technology - Energy Storage -- 8.6 Innovative Energy Conversion Solutions -- References -- Part II: Technology Evaluation -- Chapter 9: Cost of Energy -- 9.1 The Approach to Cost of Energy -- 9.2 Energy: the Power Curve -- 9.3 Energy: Efficiency, Reliability, Availability -- 9.4 Capital Costs -- 9.5 Operation and Maintenance -- 9.6 Overall Cost Split -- 9.7 Scaling Impact on Cost -- 9.8 Impact of Loads (Site Class) -- References -- Chapter 10: Evaluation Methodology -- 10.1 Key Evaluation Issues -- 10.2 Fatal Flaw Analysis -- 10.3 Power Performance -- 10.4 Structure and Essential Mass -- 10.5 Drive-Train Torque -- 10.6 Representative Baseline -- 10.7 Design Loads Comparison.
10.8 Evaluation Example: Optimum Rated Power of a Wind Turbine -- 10.9 Evaluation Example: the Carter Wind Turbine and Structural Flexibility -- 10.10 Evaluation Example: Concept Design Optimisation Study -- 10.11 Evaluation Example: Ducted Turbine Design Overview -- References -- Part III: Design Themes -- Chapter 11: Optimum Blade Number -- 11.1 Energy Capture Comparisons -- 11.2 Blade Design Issues -- 11.3 Operational and System Design Issues -- 11.4 Multi-bladed Rotors -- References -- Chapter 12: Pitch versus Stall -- 12.1 Stall Regulation -- 12.2 Pitch Regulation -- 12.3 Fatigue Loading Issues -- 12.4 Power Quality and Network Demands -- References -- Chapter 13: HAWT or VAWT? -- 13.1 Introduction -- 13.2 VAWT Aerodynamics -- 13.3 Power Performance and Energy Capture -- 13.4 Drive-Train Torque -- 13.5 Niche Applications for VAWTs -- 13.6 Status of VAWT Design -- References -- Chapter 14: Free Yaw -- 14.1 Yaw System COE Value -- 14.2 Yaw Dynamics -- 14.3 Yaw Damping -- 14.4 Main Power Transmission -- 14.5 Operational Experience of Free Yaw Wind Turbines -- 14.6 Summary View -- References -- Chapter 15: Multi-rotor Systems (MRS) -- 15.1 Introduction -- 15.2 Standardisation Benefit and Concept Developments -- 15.3 Operational Systems -- 15.4 Scaling Economics -- 15.5 History Overview -- 15.6 Aerodynamic Performance of Multi-rotor Arrays -- 15.7 Recent Multi-rotor Concepts -- 15.8 MRS Design Based on VAWT Units -- 15.9 MRS Design within the Innwind.EU Project -- 15.10 Multi-rotor Conclusions -- References -- Chapter 16: Design Themes Summary -- Part IV: Innovative Technology Examples -- Chapter 17: Adaptable Rotor Concepts -- 17.1 Rotor Operational Demands -- 17.2 Management of Wind Turbine Loads -- 17.3 Control of Wind Turbines -- 17.4 LiDAR -- 17.5 Adaptable Rotors -- 17.6 The Coning Rotor -- 17.7 Variable Diameter Rotor -- References.
Chapter 18: Ducted Rotors -- 18.1 Introduction -- 18.2 The Katru Shrouded Rotor System -- 18.3 The Wind Lens Ducted Rotor -- References -- Chapter 19: The Gamesa G10X Drive Train -- Chapter 20: DeepWind Innovative VAWT -- 20.1 The Concept -- 20.2 DeepWind Concept at 5 MW Scale -- 20.3 Marine Operations Installation, Transportation and O& -- M -- 20.4 Testing and Demonstration -- 20.5 Cost Estimations -- References -- Chapter 21: Gyroscopic Torque Transmission -- References -- Chapter 22: The Norsetek Rotor Design -- References -- Chapter 23: Siemens Blade Technology -- Chapter 24: Stall-Induced Vibrations -- References -- Chapter 25: Magnetic Gearing and Pseudo-Direct Drive -- 25.1 Magnetic Gearing Technology -- 25.2 Pseudo-Direct-Drive Technology -- References -- Chapter 26: Summary and Concluding Comments -- Index -- End User License Agreement.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.