ORPP logo
Image from Google Jackets

Communication Acoustics : An Introduction to Speech, Audio and Psychoacoustics.

By: Material type: TextTextSeries: New York Academy of Sciences SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2015Copyright date: ©2015Edition: 1st edDescription: 1 online resource (457 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118866580
Subject(s): Genre/Form: Additional physical formats: Print version:: Communication AcousticsDDC classification:
  • 620.20000000000005
LOC classification:
  • TK7881.4 .P85 2015
Online resources:
Contents:
Intro -- Communication Acoustics: An Introduction to Speech, Audio, and Psychoacoustics -- Copyright -- Contents -- About the Authors -- Preface -- Preface to the Unfinished Manuscript of the Book -- Introduction -- Chapter 1 How to Study and Develop Communication Acoustics -- 1.1 Domains of Knowledge -- 1.2 Methodology of Research and Development -- 1.3 Systems Approach to Modelling -- 1.4 About the Rest of this Book -- 1.5 Focus of the Book -- 1.6 Intended Audience -- References -- Chapter 2 Physics of Sound -- 2.1 Vibration and Wave Behaviour of Sound -- 2.1.1 From Vibration to Waves -- 2.1.2 A Simple Vibrating System -- 2.1.3 Resonance -- 2.1.4 Complex Mass-Spring Systems -- 2.1.5 Modal Behaviour -- 2.1.6 Waves -- 2.2 Acoustic Measures and Quantities -- 2.2.1 Sound and Voice as Signals -- 2.2.2 Sound Pressure -- 2.2.3 Sound Pressure Level -- 2.2.4 Sound Power -- 2.2.5 Sound Intensity -- 2.2.6 Computation with Amplitude and Level Quantities -- 2.3 Wave Phenomena -- 2.3.1 Spherical Waves -- 2.3.2 Plane Waves and the Wave Field in a Tube -- 2.3.3 Wave Propagation in Solid Materials -- 2.3.4 Reflection, Absorption, and Refraction -- 2.3.5 Scattering and Diffraction -- 2.3.6 Doppler Effect -- 2.4 Sound in Closed Spaces: Acoustics of Rooms and Halls -- 2.4.1 Sound Field in a Room -- 2.4.2 Reverberation -- 2.4.3 Sound Pressure Level in a Room -- 2.4.4 Modal Behaviour of Sound in a Room -- 2.4.5 Computational Modelling of Closed Space Acoustics -- Summary -- Further Reading -- References -- Chapter 3 Signal Processing and Signals -- 3.1 Signals -- 3.1.1 Sounds as Signals -- 3.1.2 Typical Signals -- 3.2 Fundamental Concepts of Signal Processing -- 3.2.1 Linear and Time-Invariant Systems -- 3.2.2 Convolution -- 3.2.3 Signal Transforms -- 3.2.4 Fourier Analysis and Synthesis -- 3.2.5 Spectrum Analysis -- 3.2.6 Time-Frequency Representations.
3.2.7 Filter Banks -- 3.2.8 Auto- and Cross-Correlation -- 3.2.9 Cepstrum -- 3.3 Digital Signal Processing (DSP) -- 3.3.1 Sampling and Signal Conversion -- 3.3.2 Z Transform -- 3.3.3 Filters as LTI Systems -- 3.3.4 Digital Filtering -- 3.3.5 Linear Prediction -- 3.3.6 Adaptive Filtering -- 3.4 Hidden Markov Models -- 3.5 Concepts of Intelligent and Learning Systems -- Summary -- Further Reading -- References -- Chapter 4 Electroacoustics and Responses of Audio Systems -- 4.1 Electroacoustics -- 4.1.1 Loudspeakers -- 4.1.2 Microphones -- 4.2 Audio System Responses -- 4.2.1 Measurement of System Response -- 4.2.2 Ideal Reproduction of Sound -- 4.2.3 Impulse Response and Magnitude Response -- 4.2.4 Phase Response -- 4.2.5 Non-Linear Distortion -- 4.2.6 Signal-to-Noise Ratio -- 4.3 Response Equalization -- Summary -- Further Reading -- References -- Chapter 5 Human Voice -- 5.1 Speech Production -- 5.1.1 Speech Production Mechanism -- 5.1.2 Vocal Folds and Phonation -- 5.1.3 Vocal and Nasal Tract and Articulation -- 5.1.4 Lip Radiation Measurements -- 5.2 Units and Notation of Speech used in Phonetics -- 5.2.1 Vowels -- 5.2.2 Consonants -- 5.2.3 Prosody and Suprasegmental Features -- 5.3 Modelling of Speech Production -- 5.3.1 Glottal Modelling -- 5.3.2 Vocal Tract Modelling -- 5.3.3 Articulatory Synthesis -- 5.3.4 Formant Synthesis -- 5.4 Singing Voice -- Summary -- Further Reading -- References -- Chapter 6 Musical Instruments and Sound Synthesis -- 6.1 Acoustic Instruments -- 6.1.1 Types of Musical Instruments -- 6.1.2 Resonators in Instruments -- 6.1.3 Sources of Excitation -- 6.1.4 Controlling the Frequency of Vibration -- 6.1.5 Combining the Excitation and Resonant Structures -- 6.2 Sound Synthesis in Music -- 6.2.1 Envelope of Sounds -- 6.2.2 Synthesis Methods -- 6.2.3 Synthesis of Plucked String Instruments with a One-Dimensional Physical Model.
Summary -- Further Reading -- References -- Chapter 7 Physiology and Anatomy of Hearing -- 7.1 Global Structure of the Ear -- 7.2 External Ear -- 7.3 Middle Ear -- 7.4 Inner Ear -- 7.4.1 Structure of the Cochlea -- 7.4.2 Passive Cochlear Processing -- 7.4.3 Active Function of the Cochlea -- 7.4.4 The Inner Hair Cells -- 7.4.5 Cochlear Non-Linearities -- 7.5 Otoacoustic Emissions -- 7.6 Auditory Nerve -- 7.6.1 Information Transmission using the Firing Rate -- 7.6.2 Phase Locking -- 7.7 Auditory Nervous System -- 7.7.1 Structure of the Auditory Pathway -- 7.7.2 Studying Brain Function -- 7.8 Motivation for Building Computational Models of Hearing -- Summary -- Further Reading -- References -- Chapter 8 The Approach and Methodology of Psychoacoustics -- 8.1 Sound Events versus Auditory Events -- 8.2 Psychophysical Functions -- 8.3 Generation of Sound Events -- 8.3.1 Synthesis of Sound Signals -- 8.3.2 Listening Set-up and Conditions -- 8.3.3 Steering Attention to Certain Details of An Auditory Event -- 8.4 Selection of Subjects for Listening Tests -- 8.5 What are We Measuring? -- 8.5.1 Thresholds -- 8.5.2 Scales and Categorization of Percepts -- 8.5.3 Numbering Scales in Listening Tests -- 8.6 Tasks for Subjects -- 8.7 Basic Psychoacoustic Test Methods -- 8.7.1 Method of Constant Stimuli -- 8.7.2 Method of Limits -- 8.7.3 Method of Adjustment -- 8.7.4 Method of Tracking -- 8.7.5 Direct Scaling Methods -- 8.7.6 Adaptive Staircase Methods -- 8.8 Descriptive Sensory Analysis -- 8.8.1 Verbal Elicitation -- 8.8.2 Non-Verbal Elicitation -- 8.8.3 Indirect Elicitation -- 8.9 Psychoacoustic Tests from the Point of View of Statistics -- Summary -- Further Reading -- References -- Chapter 9 Basic Function of Hearing -- 9.1 Effective Hearing Area -- 9.1.1 Equal Loudness Curves -- 9.1.2 Sound Level and its Measurement -- 9.2 Spectral Masking.
9.2.1 Masking by Noise -- 9.2.2 Masking by Pure Tones -- 9.2.3 Masking by Complex Tones -- 9.2.4 Other Masking Phenomena -- 9.3 Temporal Masking -- 9.4 Frequency Selectivity of Hearing -- 9.4.1 Psychoacoustic Tuning Curves -- 9.4.2 ERB Bandwidths -- 9.4.3 Bark, ERB, and Greenwood Scales -- Summary -- Further Reading -- References -- Chapter 10 Basic Psychoacoustic Quantities -- 10.1 Pitch -- 10.1.1 Pitch Strength and Frequency Range -- 10.1.2 JND of Pitch -- 10.1.3 Pitch Perception versus Duration of Sound -- 10.1.4 Mel Scale -- 10.1.5 Logarithmic Pitch Scale and Musical Scale -- 10.1.6 Detection Threshold of Pitch Change and Frequency Modulation -- 10.1.7 Pitch of Coloured Noise -- 10.1.8 Repetition Pitch -- 10.1.9 Virtual Pitch -- 10.1.10 Pitch of Non-Harmonic Complex Sounds -- 10.1.11 Pitch Theories -- 10.1.12 Absolute Pitch -- 10.2 Loudness -- 10.2.1 Loudness Determination Experiments -- 10.2.2 Loudness Level -- 10.2.3 Loudness of a Pure Tone -- 10.2.4 Loudness of Broadband Signals -- 10.2.5 Excitation Pattern, Specific Loudness, and Loudness -- 10.2.6 Difference Threshold of Loudness -- 10.2.7 Loudness versus Duration of Sound -- 10.3 Timbre -- 10.3.1 Timbre of Steady-State Sounds -- 10.3.2 Timbre of Sound Including Modulations -- 10.4 Subjective Duration of Sound -- Summary -- Further Reading -- References -- Chapter 11 Further Analysis in Hearing -- 11.1 Sharpness -- 11.2 Detection of Modulation and Sound Onset -- 11.2.1 Fluctuation Strength -- 11.2.2 Impulsiveness -- 11.3 Roughness -- 11.4 Tonality -- 11.5 Discrimination of Changes in Signal Magnitude and Phase Spectra -- 11.5.1 Adaptation to the Magnitude Spectrum -- 11.5.2 Perception of Phase and Time Differences -- 11.6 Psychoacoustic Concepts and Music -- 11.6.1 Sensory Consonance and Dissonance -- 11.6.2 Intervals, Scales, and Tuning in Music -- 11.6.3 Rhythm, Tempo, Bar, and Measure.
11.7 Perceptual Organization of Sound -- 11.7.1 Segregation of Sound Sources -- 11.7.2 Sound Streaming and Auditory Scene Analysis -- Summary -- Further Reading -- References -- Chapter 12 Spatial Hearing -- 12.1 Concepts and Definitions for Spatial Hearing -- 12.1.1 Basic Concepts -- 12.1.2 Coordinate Systems for Spatial Hearing -- 12.2 Head-Related Acoustics -- 12.3 Localization Cues -- 12.3.1 Interaural Time Difference -- 12.3.2 Interaural Level Difference -- 12.3.3 Interaural Coherence -- 12.3.4 Cues to Resolve the Direction on the Cone of Confusion -- 12.3.5 Interaction Between Spatial Hearing and Vision -- 12.4 Localization Accuracy -- 12.4.1 Localization in the Horizontal Plane -- 12.4.2 Localization in the Median Plane -- 12.4.3 3D Localization -- 12.4.4 Perception of the Distribution of a Spatially Extended Source -- 12.5 Directional Hearing in Enclosed Spaces -- 12.5.1 Precedence Effect -- 12.5.2 Adaptation to the Room Effect in Localization -- 12.6 Binaural Advantages in Timbre Perception -- 12.6.1 Binaural Detection and Unmasking -- 12.6.2 Binaural Decolouration -- 12.7 Perception of Source Distance -- 12.7.1 Cues for Distance Perception -- 12.7.2 Accuracy of Distance Perception -- Summary -- Further Reading -- References -- Chapter 13 Auditory Modelling -- 13.1 Simple Psychoacoustic Modelling with DFT -- 13.1.1 Computation of the Auditory Spectrum through DFT -- 13.2 Filter Bank Models -- 13.2.1 Modelling the Outer and Middle Ear -- 13.2.2 Gammatone Filter Bank and Auditory Nerve Responses -- 13.2.3 Level-Dependent Filter Banks -- 13.2.4 Envelope Detection and Temporal Dynamics -- 13.3 Cochlear Models -- 13.3.1 Basilar Membrane Models -- 13.3.2 Hair-Cell Models -- 13.4 Modelling of Higher-Level Systemic Properties -- 13.4.1 Analysis of Pitch and Periodicity -- 13.4.2 Modelling of Loudness Perception -- 13.5 Models of Spatial Hearing.
13.5.1 Delay-Network-Based Models of Binaural Hearing.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Communication Acoustics: An Introduction to Speech, Audio, and Psychoacoustics -- Copyright -- Contents -- About the Authors -- Preface -- Preface to the Unfinished Manuscript of the Book -- Introduction -- Chapter 1 How to Study and Develop Communication Acoustics -- 1.1 Domains of Knowledge -- 1.2 Methodology of Research and Development -- 1.3 Systems Approach to Modelling -- 1.4 About the Rest of this Book -- 1.5 Focus of the Book -- 1.6 Intended Audience -- References -- Chapter 2 Physics of Sound -- 2.1 Vibration and Wave Behaviour of Sound -- 2.1.1 From Vibration to Waves -- 2.1.2 A Simple Vibrating System -- 2.1.3 Resonance -- 2.1.4 Complex Mass-Spring Systems -- 2.1.5 Modal Behaviour -- 2.1.6 Waves -- 2.2 Acoustic Measures and Quantities -- 2.2.1 Sound and Voice as Signals -- 2.2.2 Sound Pressure -- 2.2.3 Sound Pressure Level -- 2.2.4 Sound Power -- 2.2.5 Sound Intensity -- 2.2.6 Computation with Amplitude and Level Quantities -- 2.3 Wave Phenomena -- 2.3.1 Spherical Waves -- 2.3.2 Plane Waves and the Wave Field in a Tube -- 2.3.3 Wave Propagation in Solid Materials -- 2.3.4 Reflection, Absorption, and Refraction -- 2.3.5 Scattering and Diffraction -- 2.3.6 Doppler Effect -- 2.4 Sound in Closed Spaces: Acoustics of Rooms and Halls -- 2.4.1 Sound Field in a Room -- 2.4.2 Reverberation -- 2.4.3 Sound Pressure Level in a Room -- 2.4.4 Modal Behaviour of Sound in a Room -- 2.4.5 Computational Modelling of Closed Space Acoustics -- Summary -- Further Reading -- References -- Chapter 3 Signal Processing and Signals -- 3.1 Signals -- 3.1.1 Sounds as Signals -- 3.1.2 Typical Signals -- 3.2 Fundamental Concepts of Signal Processing -- 3.2.1 Linear and Time-Invariant Systems -- 3.2.2 Convolution -- 3.2.3 Signal Transforms -- 3.2.4 Fourier Analysis and Synthesis -- 3.2.5 Spectrum Analysis -- 3.2.6 Time-Frequency Representations.

3.2.7 Filter Banks -- 3.2.8 Auto- and Cross-Correlation -- 3.2.9 Cepstrum -- 3.3 Digital Signal Processing (DSP) -- 3.3.1 Sampling and Signal Conversion -- 3.3.2 Z Transform -- 3.3.3 Filters as LTI Systems -- 3.3.4 Digital Filtering -- 3.3.5 Linear Prediction -- 3.3.6 Adaptive Filtering -- 3.4 Hidden Markov Models -- 3.5 Concepts of Intelligent and Learning Systems -- Summary -- Further Reading -- References -- Chapter 4 Electroacoustics and Responses of Audio Systems -- 4.1 Electroacoustics -- 4.1.1 Loudspeakers -- 4.1.2 Microphones -- 4.2 Audio System Responses -- 4.2.1 Measurement of System Response -- 4.2.2 Ideal Reproduction of Sound -- 4.2.3 Impulse Response and Magnitude Response -- 4.2.4 Phase Response -- 4.2.5 Non-Linear Distortion -- 4.2.6 Signal-to-Noise Ratio -- 4.3 Response Equalization -- Summary -- Further Reading -- References -- Chapter 5 Human Voice -- 5.1 Speech Production -- 5.1.1 Speech Production Mechanism -- 5.1.2 Vocal Folds and Phonation -- 5.1.3 Vocal and Nasal Tract and Articulation -- 5.1.4 Lip Radiation Measurements -- 5.2 Units and Notation of Speech used in Phonetics -- 5.2.1 Vowels -- 5.2.2 Consonants -- 5.2.3 Prosody and Suprasegmental Features -- 5.3 Modelling of Speech Production -- 5.3.1 Glottal Modelling -- 5.3.2 Vocal Tract Modelling -- 5.3.3 Articulatory Synthesis -- 5.3.4 Formant Synthesis -- 5.4 Singing Voice -- Summary -- Further Reading -- References -- Chapter 6 Musical Instruments and Sound Synthesis -- 6.1 Acoustic Instruments -- 6.1.1 Types of Musical Instruments -- 6.1.2 Resonators in Instruments -- 6.1.3 Sources of Excitation -- 6.1.4 Controlling the Frequency of Vibration -- 6.1.5 Combining the Excitation and Resonant Structures -- 6.2 Sound Synthesis in Music -- 6.2.1 Envelope of Sounds -- 6.2.2 Synthesis Methods -- 6.2.3 Synthesis of Plucked String Instruments with a One-Dimensional Physical Model.

Summary -- Further Reading -- References -- Chapter 7 Physiology and Anatomy of Hearing -- 7.1 Global Structure of the Ear -- 7.2 External Ear -- 7.3 Middle Ear -- 7.4 Inner Ear -- 7.4.1 Structure of the Cochlea -- 7.4.2 Passive Cochlear Processing -- 7.4.3 Active Function of the Cochlea -- 7.4.4 The Inner Hair Cells -- 7.4.5 Cochlear Non-Linearities -- 7.5 Otoacoustic Emissions -- 7.6 Auditory Nerve -- 7.6.1 Information Transmission using the Firing Rate -- 7.6.2 Phase Locking -- 7.7 Auditory Nervous System -- 7.7.1 Structure of the Auditory Pathway -- 7.7.2 Studying Brain Function -- 7.8 Motivation for Building Computational Models of Hearing -- Summary -- Further Reading -- References -- Chapter 8 The Approach and Methodology of Psychoacoustics -- 8.1 Sound Events versus Auditory Events -- 8.2 Psychophysical Functions -- 8.3 Generation of Sound Events -- 8.3.1 Synthesis of Sound Signals -- 8.3.2 Listening Set-up and Conditions -- 8.3.3 Steering Attention to Certain Details of An Auditory Event -- 8.4 Selection of Subjects for Listening Tests -- 8.5 What are We Measuring? -- 8.5.1 Thresholds -- 8.5.2 Scales and Categorization of Percepts -- 8.5.3 Numbering Scales in Listening Tests -- 8.6 Tasks for Subjects -- 8.7 Basic Psychoacoustic Test Methods -- 8.7.1 Method of Constant Stimuli -- 8.7.2 Method of Limits -- 8.7.3 Method of Adjustment -- 8.7.4 Method of Tracking -- 8.7.5 Direct Scaling Methods -- 8.7.6 Adaptive Staircase Methods -- 8.8 Descriptive Sensory Analysis -- 8.8.1 Verbal Elicitation -- 8.8.2 Non-Verbal Elicitation -- 8.8.3 Indirect Elicitation -- 8.9 Psychoacoustic Tests from the Point of View of Statistics -- Summary -- Further Reading -- References -- Chapter 9 Basic Function of Hearing -- 9.1 Effective Hearing Area -- 9.1.1 Equal Loudness Curves -- 9.1.2 Sound Level and its Measurement -- 9.2 Spectral Masking.

9.2.1 Masking by Noise -- 9.2.2 Masking by Pure Tones -- 9.2.3 Masking by Complex Tones -- 9.2.4 Other Masking Phenomena -- 9.3 Temporal Masking -- 9.4 Frequency Selectivity of Hearing -- 9.4.1 Psychoacoustic Tuning Curves -- 9.4.2 ERB Bandwidths -- 9.4.3 Bark, ERB, and Greenwood Scales -- Summary -- Further Reading -- References -- Chapter 10 Basic Psychoacoustic Quantities -- 10.1 Pitch -- 10.1.1 Pitch Strength and Frequency Range -- 10.1.2 JND of Pitch -- 10.1.3 Pitch Perception versus Duration of Sound -- 10.1.4 Mel Scale -- 10.1.5 Logarithmic Pitch Scale and Musical Scale -- 10.1.6 Detection Threshold of Pitch Change and Frequency Modulation -- 10.1.7 Pitch of Coloured Noise -- 10.1.8 Repetition Pitch -- 10.1.9 Virtual Pitch -- 10.1.10 Pitch of Non-Harmonic Complex Sounds -- 10.1.11 Pitch Theories -- 10.1.12 Absolute Pitch -- 10.2 Loudness -- 10.2.1 Loudness Determination Experiments -- 10.2.2 Loudness Level -- 10.2.3 Loudness of a Pure Tone -- 10.2.4 Loudness of Broadband Signals -- 10.2.5 Excitation Pattern, Specific Loudness, and Loudness -- 10.2.6 Difference Threshold of Loudness -- 10.2.7 Loudness versus Duration of Sound -- 10.3 Timbre -- 10.3.1 Timbre of Steady-State Sounds -- 10.3.2 Timbre of Sound Including Modulations -- 10.4 Subjective Duration of Sound -- Summary -- Further Reading -- References -- Chapter 11 Further Analysis in Hearing -- 11.1 Sharpness -- 11.2 Detection of Modulation and Sound Onset -- 11.2.1 Fluctuation Strength -- 11.2.2 Impulsiveness -- 11.3 Roughness -- 11.4 Tonality -- 11.5 Discrimination of Changes in Signal Magnitude and Phase Spectra -- 11.5.1 Adaptation to the Magnitude Spectrum -- 11.5.2 Perception of Phase and Time Differences -- 11.6 Psychoacoustic Concepts and Music -- 11.6.1 Sensory Consonance and Dissonance -- 11.6.2 Intervals, Scales, and Tuning in Music -- 11.6.3 Rhythm, Tempo, Bar, and Measure.

11.7 Perceptual Organization of Sound -- 11.7.1 Segregation of Sound Sources -- 11.7.2 Sound Streaming and Auditory Scene Analysis -- Summary -- Further Reading -- References -- Chapter 12 Spatial Hearing -- 12.1 Concepts and Definitions for Spatial Hearing -- 12.1.1 Basic Concepts -- 12.1.2 Coordinate Systems for Spatial Hearing -- 12.2 Head-Related Acoustics -- 12.3 Localization Cues -- 12.3.1 Interaural Time Difference -- 12.3.2 Interaural Level Difference -- 12.3.3 Interaural Coherence -- 12.3.4 Cues to Resolve the Direction on the Cone of Confusion -- 12.3.5 Interaction Between Spatial Hearing and Vision -- 12.4 Localization Accuracy -- 12.4.1 Localization in the Horizontal Plane -- 12.4.2 Localization in the Median Plane -- 12.4.3 3D Localization -- 12.4.4 Perception of the Distribution of a Spatially Extended Source -- 12.5 Directional Hearing in Enclosed Spaces -- 12.5.1 Precedence Effect -- 12.5.2 Adaptation to the Room Effect in Localization -- 12.6 Binaural Advantages in Timbre Perception -- 12.6.1 Binaural Detection and Unmasking -- 12.6.2 Binaural Decolouration -- 12.7 Perception of Source Distance -- 12.7.1 Cues for Distance Perception -- 12.7.2 Accuracy of Distance Perception -- Summary -- Further Reading -- References -- Chapter 13 Auditory Modelling -- 13.1 Simple Psychoacoustic Modelling with DFT -- 13.1.1 Computation of the Auditory Spectrum through DFT -- 13.2 Filter Bank Models -- 13.2.1 Modelling the Outer and Middle Ear -- 13.2.2 Gammatone Filter Bank and Auditory Nerve Responses -- 13.2.3 Level-Dependent Filter Banks -- 13.2.4 Envelope Detection and Temporal Dynamics -- 13.3 Cochlear Models -- 13.3.1 Basilar Membrane Models -- 13.3.2 Hair-Cell Models -- 13.4 Modelling of Higher-Level Systemic Properties -- 13.4.1 Analysis of Pitch and Periodicity -- 13.4.2 Modelling of Loudness Perception -- 13.5 Models of Spatial Hearing.

13.5.1 Delay-Network-Based Models of Binaural Hearing.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.