ORPP logo
Image from Google Jackets

Hydrometeorology.

By: Material type: TextTextSeries: New York Academy of Sciences SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2016Copyright date: ©2016Edition: 1st edDescription: 1 online resource (390 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118414934
Subject(s): Genre/Form: Additional physical formats: Print version:: HydrometeorologyDDC classification:
  • 551.57000000000005
LOC classification:
  • GB2805 .C655 2016
Online resources:
Contents:
Intro -- Title Page -- Copyright Page -- Contents -- Series Foreword -- Preface -- Acknowledgements -- About the Companion Website -- Chapter 1 The Hydrological Cycle -- 1.1 Overview -- 1.2 Processes comprising the hydrological cycle -- 1.3 Global influences on the hydrological cycle -- 1.4 Water balance -- 1.5 Impact of aerosols on the hydrological cycle -- 1.6 Coupled models for the hydrological cycle -- 1.7 Global Energy and Water Cycle Exchanges Project (GEWEX) -- 1.8 Flooding -- Summary of key points in this chapter -- Problems -- References -- Chapter 2 Precipitation -- 2.1 Introduction -- 2.2 Equation of state for a perfect gas -- 2.3 Hydrostatic pressure law -- 2.4 First law of thermodynamics -- 2.5 Atmospheric processes: dry adiabatic lapse rate -- 2.6 Water vapour in the atmosphere -- 2.7 Atmospheric processes: saturated adiabatic lapse rate -- 2.8 Stability and convection in the atmosphere -- 2.9 The growth of precipitation particles -- 2.10 Precipitation systems -- 2.10.1 Localized convection -- 2.10.2 Mesoscale precipitation systems -- 2.10.3 Mid-latitude depressions -- 2.10.4 Tropical storms -- 2.10.5 Orographic effects on precipitation distribution -- 2.10.6 Topographical effects on precipitation distribution -- 2.11 Global atmospheric circulation -- Appendix 2.1 Growth of a raindrop -- Summary of key points in this chapter -- Problems -- References -- Chapter 3 Evaporation and Transpiration -- 3.1 Introduction -- 3.2 Modelling potential evaporation based upon observations -- 3.3 Aerodynamic approach -- 3.4 Energy balance -- 3.5 The Penman equation -- 3.6 Sensible and water vapour fluxes -- 3.7 Evaporation of water from wet vegetation surfaces: the interception process -- 3.8 Measuring evaporation and transpiration -- 3.9 Water circulation in the soil-plant-atmosphere continuum -- 3.10 Water circulation and transpiration.
3.11 Water flux in plants -- 3.12 Modelling land surface temperatures and fluxes -- 3.13 Soil-vegetation-atmosphere transfer schemes -- 3.14 Estimation of large scale evapotranspiration and total water storage in a river basin -- Appendix 3.1  Combination of aerodynamic and energy balance methods of computing lake evaporation -- Appendix 3.2 Modelling soil moisture wetness -- Summary of key points in this chapter -- Problems -- References -- Chapter 4 Snow and Ice -- 4.1 Introduction -- 4.2 Basic processes -- 4.2.1 Formation of snow -- 4.2.2 Formation of snow cover and its effects on the atmosphere -- 4.2.3 Formation of ice -- 4.3 Characteristics of snow cover -- 4.4 Glaciers -- 4.5 Sea ice -- 4.6 Permafrost -- 4.7 The physics of melting and water movement through snow -- 4.8 Water equivalent of snow -- 4.9 Modelling snowmelt and stream flow -- 4.10 Snow avalanches -- 4.11 Worldwide distribution and extremes of snow cover -- Appendix 4.1 Estimates of catchment snowmelt inflow rates -- Summary of key points in this chapter -- Problems -- References -- Chapter 5 Measurements and Instrumentation -- 5.1 Measurement, resolution, precision and accuracy -- 5.2 Point measurements of precipitation -- 5.2.1 Raingauge types -- 5.2.2 Measuring snow and hail -- 5.2.3 Errors in measurement -- 5.3 Areal measurements of precipitation using raingauge networks -- 5.4 Radar measurements of rainfall -- 5.4.1 Basics -- 5.4.2 Errors in radar measurements -- 5.4.3 Adjustment using raingauges -- 5.4.4 Summary of problem areas associated with radar measurements of precipitation -- 5.4.5 The use of multi‐parameter radar -- 5.4.6 Drop size distributions -- 5.4.7 Rainfall estimation using parametric variables -- 5.4.8 Measurement of snow -- 5.4.9 Measurement of hail -- 5.4.10 Precipitation type -- 5.5 Soil moisture -- 5.5.1 Approaches -- 5.5.2 Gravimetric method.
5.5.3 Electrical resistance method -- 5.5.4 Neutron method -- 5.5.5 Gamma ray attenuation method -- 5.5.6 COSMOS-UK -- 5.5.7 Dielectric methods -- 5.5.8 Tensiometric method -- 5.5.9 Satellite remote sensing -- 5.6 Evaporation and evapotranspiration -- 5.7 Flow measurement: basic hydrometry -- 5.8 Measuring stream discharge -- 5.8.1 The stage-discharge curve -- 5.8.2 Automated moving boat methods -- 5.9 Brief overview of modern telemetry -- 5.9.1 Ground-based telemetry links -- 5.9.2 VHF and UHF radio links -- 5.9.3 Satellite links -- Appendix 5.1 Combining dissimilar estimates by the method of least squares -- Summary of key points in this chapter -- Problems -- References -- Chapter 6 Satellite-Based Remote Sensing -- 6.1 Overview of satellite remote sensing -- 6.2 Surface scattering of electromagnetic radiation -- 6.3 Interaction of electromagnetic radiation with the atmosphere -- 6.4 Visible and infrared data -- 6.4.1 Precipitation -- 6.4.2 Snow depth -- 6.4.3 Soil moisture and evapotranspiration -- 6.5 Multispectral data -- 6.5.1 Precipitation -- 6.5.2 Cloud recognition -- 6.5.3 Snow -- 6.6 Passive microwave techniques -- 6.6.1 Precipitation -- 6.6.2 Global Precipitation Climatology Project (GPCP) -- 6.6.3 Global Precipitation Measurement mission (GPM) -- 6.6.4 Snow depth -- 6.6.5 Sea ice and sea surface temperature -- 6.6.6 Soil moisture and evapotranspiration -- 6.7 Active (radar) microwave techniques -- 6.7.1 Synthetic aperture radar -- 6.7.2 Radar systems -- 6.7.3 Tropical Rainfall Measuring Mission (TRMM) -- 6.8 The surface energy balance system (SEBS) -- 6.9 Summary of satellite measurement issues -- Appendix 6.1 Radiation balance -- Summary of key points in this chapter -- Problems -- References -- Chapter 7 Analysis of Precipitation Fields and Flood Frequency -- 7.1 Introduction -- 7.2 Areal mean precipitation.
7.3 Spatial and temporal storm analysis -- 7.3.1 Spatial statistical analyses -- 7.3.2 Temporal analyses -- 7.3.3 Oscillations in precipitation -- 7.3.4 Conditional probabilities -- 7.3.5 Kriging -- 7.3.6 Accuracy of the precipitation products -- 7.4 Model storms for design -- 7.5 Approaches to estimating flood frequency -- 7.6 Probable maximum precipitation (PMP) -- 7.7 Probable maximum flood (PMF) -- 7.8 Flood Studies Report (FSR) -- 7.9 Flood Estimation Handbook (FEH) -- Appendix 7.1 Three-dimensional description of a rainfall surface -- Appendix 7.2 Gumbel distribution -- Summary of key points in this chapter -- Problems -- References -- Chapter 8 Precipitation Forecasting -- 8.1 Introduction -- 8.2 Nowcasting -- 8.2.1 Definition -- 8.2.2 Impact of errors in precipitation measurements -- 8.2.3 Extrapolation of radar data -- 8.3 Probabilistic radar nowcasting -- 8.4 Numerical models: structure, data requirements, data assimilation -- 8.4.1 Probabilistic quantitative precipitation forecasting -- 8.4.2 Mesoscale models -- 8.4.3 Data assimilation -- 8.4.4 Performance of high resolution mesoscale model‐based nowcasting systems -- 8.5 Medium range forecasting -- 8.6 Seasonal forecasting -- Appendix 8.1 Brier skill score -- Summary of key points in this chapter -- Problems -- References -- Chapter 9 Flow Forecasting -- 9.1 Basic flood forecasting techniques -- 9.2 Model calibration and equifinality -- 9.3 Flood forecasting model development -- 9.4 Conversion of detailed hydrodynamic models to simplified models suitable for real‐time flood forecasting -- 9.5 Probabilistic flood forecasting and decision support methods -- 9.6 Derivation of station rating (stage‐discharge) curves -- 9.7 Performance testing of forecasting models and updating procedures -- 9.8 Configuration of models on to national and international forecasting platforms.
9.9 Flood warnings and levels of service -- 9.9.1 United Kingdom -- 9.9.2 United States and Canada -- 9.10 Case studies worldwide: river and urban -- Appendix 9.1 St Venant equations -- Appendix 9.2 Flow in unsaturated and saturated zones -- Summary of key points in this chapter -- Problems -- References -- Chapter 10 Coastal Flood Forecasting -- 10.1 Types of coastal flooding -- 10.2 Models used to predict storm surge flooding -- 10.2.1 Empirical models -- 10.2.2 First-generation models -- 10.2.3 Second-generation models -- 10.2.4 Third-generation models -- 10.2.5 Wave, tide and surge models -- 10.3 Probabilistic surge forecasting -- 10.4 Tsunamis -- 10.5 Examples of coastal flooding in the United Kingdom -- 10.5.1 The surge of 1953 -- 10.5.2 Wirral floods 2013 -- 10.5.3 Surges along the east coast of England, December 2013 -- 10.5.4 Aberystwyth floods January 2014 -- 10.6 Some examples of coastal flooding worldwide -- Appendix 10.1 Wave overtopping at the coast -- Summary of key points in this chapter -- Problems -- References -- Chapter 11 Drought -- 11.1 Definitions -- 11.2 Drought indices -- 11.3 The physics of drought -- 11.4 Frequency analysis: predictability -- 11.5 Modelling the occurrence of drought -- 11.6 Major drought worldwide -- 11.7 Examples of the consequences of drought -- 11.8 Strategies for drought protection, mitigation or relief -- Appendix 11.1 Defining aridity -- Summary of key points in this chapter -- Problems -- References -- Chapter 12 Wind and the Global Circulation -- 12.1 Equations of motion -- 12.2 Atmospheric Ekman layer -- 12.3 Fronts -- 12.4 Jet streams -- 12.5 Hurricanes -- 12.6 Lee waves -- 12.7 Land and sea breezes -- 12.8 The wind structure of the atmospheric circulation -- 12.9 Hadley cell -- 12.10 Polar cell -- 12.11 Ferrel cell -- 12.12 Walker circulation -- 12.13 El Niño/Southern Oscillation.
12.14 Monsoons.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Title Page -- Copyright Page -- Contents -- Series Foreword -- Preface -- Acknowledgements -- About the Companion Website -- Chapter 1 The Hydrological Cycle -- 1.1 Overview -- 1.2 Processes comprising the hydrological cycle -- 1.3 Global influences on the hydrological cycle -- 1.4 Water balance -- 1.5 Impact of aerosols on the hydrological cycle -- 1.6 Coupled models for the hydrological cycle -- 1.7 Global Energy and Water Cycle Exchanges Project (GEWEX) -- 1.8 Flooding -- Summary of key points in this chapter -- Problems -- References -- Chapter 2 Precipitation -- 2.1 Introduction -- 2.2 Equation of state for a perfect gas -- 2.3 Hydrostatic pressure law -- 2.4 First law of thermodynamics -- 2.5 Atmospheric processes: dry adiabatic lapse rate -- 2.6 Water vapour in the atmosphere -- 2.7 Atmospheric processes: saturated adiabatic lapse rate -- 2.8 Stability and convection in the atmosphere -- 2.9 The growth of precipitation particles -- 2.10 Precipitation systems -- 2.10.1 Localized convection -- 2.10.2 Mesoscale precipitation systems -- 2.10.3 Mid-latitude depressions -- 2.10.4 Tropical storms -- 2.10.5 Orographic effects on precipitation distribution -- 2.10.6 Topographical effects on precipitation distribution -- 2.11 Global atmospheric circulation -- Appendix 2.1 Growth of a raindrop -- Summary of key points in this chapter -- Problems -- References -- Chapter 3 Evaporation and Transpiration -- 3.1 Introduction -- 3.2 Modelling potential evaporation based upon observations -- 3.3 Aerodynamic approach -- 3.4 Energy balance -- 3.5 The Penman equation -- 3.6 Sensible and water vapour fluxes -- 3.7 Evaporation of water from wet vegetation surfaces: the interception process -- 3.8 Measuring evaporation and transpiration -- 3.9 Water circulation in the soil-plant-atmosphere continuum -- 3.10 Water circulation and transpiration.

3.11 Water flux in plants -- 3.12 Modelling land surface temperatures and fluxes -- 3.13 Soil-vegetation-atmosphere transfer schemes -- 3.14 Estimation of large scale evapotranspiration and total water storage in a river basin -- Appendix 3.1  Combination of aerodynamic and energy balance methods of computing lake evaporation -- Appendix 3.2 Modelling soil moisture wetness -- Summary of key points in this chapter -- Problems -- References -- Chapter 4 Snow and Ice -- 4.1 Introduction -- 4.2 Basic processes -- 4.2.1 Formation of snow -- 4.2.2 Formation of snow cover and its effects on the atmosphere -- 4.2.3 Formation of ice -- 4.3 Characteristics of snow cover -- 4.4 Glaciers -- 4.5 Sea ice -- 4.6 Permafrost -- 4.7 The physics of melting and water movement through snow -- 4.8 Water equivalent of snow -- 4.9 Modelling snowmelt and stream flow -- 4.10 Snow avalanches -- 4.11 Worldwide distribution and extremes of snow cover -- Appendix 4.1 Estimates of catchment snowmelt inflow rates -- Summary of key points in this chapter -- Problems -- References -- Chapter 5 Measurements and Instrumentation -- 5.1 Measurement, resolution, precision and accuracy -- 5.2 Point measurements of precipitation -- 5.2.1 Raingauge types -- 5.2.2 Measuring snow and hail -- 5.2.3 Errors in measurement -- 5.3 Areal measurements of precipitation using raingauge networks -- 5.4 Radar measurements of rainfall -- 5.4.1 Basics -- 5.4.2 Errors in radar measurements -- 5.4.3 Adjustment using raingauges -- 5.4.4 Summary of problem areas associated with radar measurements of precipitation -- 5.4.5 The use of multi‐parameter radar -- 5.4.6 Drop size distributions -- 5.4.7 Rainfall estimation using parametric variables -- 5.4.8 Measurement of snow -- 5.4.9 Measurement of hail -- 5.4.10 Precipitation type -- 5.5 Soil moisture -- 5.5.1 Approaches -- 5.5.2 Gravimetric method.

5.5.3 Electrical resistance method -- 5.5.4 Neutron method -- 5.5.5 Gamma ray attenuation method -- 5.5.6 COSMOS-UK -- 5.5.7 Dielectric methods -- 5.5.8 Tensiometric method -- 5.5.9 Satellite remote sensing -- 5.6 Evaporation and evapotranspiration -- 5.7 Flow measurement: basic hydrometry -- 5.8 Measuring stream discharge -- 5.8.1 The stage-discharge curve -- 5.8.2 Automated moving boat methods -- 5.9 Brief overview of modern telemetry -- 5.9.1 Ground-based telemetry links -- 5.9.2 VHF and UHF radio links -- 5.9.3 Satellite links -- Appendix 5.1 Combining dissimilar estimates by the method of least squares -- Summary of key points in this chapter -- Problems -- References -- Chapter 6 Satellite-Based Remote Sensing -- 6.1 Overview of satellite remote sensing -- 6.2 Surface scattering of electromagnetic radiation -- 6.3 Interaction of electromagnetic radiation with the atmosphere -- 6.4 Visible and infrared data -- 6.4.1 Precipitation -- 6.4.2 Snow depth -- 6.4.3 Soil moisture and evapotranspiration -- 6.5 Multispectral data -- 6.5.1 Precipitation -- 6.5.2 Cloud recognition -- 6.5.3 Snow -- 6.6 Passive microwave techniques -- 6.6.1 Precipitation -- 6.6.2 Global Precipitation Climatology Project (GPCP) -- 6.6.3 Global Precipitation Measurement mission (GPM) -- 6.6.4 Snow depth -- 6.6.5 Sea ice and sea surface temperature -- 6.6.6 Soil moisture and evapotranspiration -- 6.7 Active (radar) microwave techniques -- 6.7.1 Synthetic aperture radar -- 6.7.2 Radar systems -- 6.7.3 Tropical Rainfall Measuring Mission (TRMM) -- 6.8 The surface energy balance system (SEBS) -- 6.9 Summary of satellite measurement issues -- Appendix 6.1 Radiation balance -- Summary of key points in this chapter -- Problems -- References -- Chapter 7 Analysis of Precipitation Fields and Flood Frequency -- 7.1 Introduction -- 7.2 Areal mean precipitation.

7.3 Spatial and temporal storm analysis -- 7.3.1 Spatial statistical analyses -- 7.3.2 Temporal analyses -- 7.3.3 Oscillations in precipitation -- 7.3.4 Conditional probabilities -- 7.3.5 Kriging -- 7.3.6 Accuracy of the precipitation products -- 7.4 Model storms for design -- 7.5 Approaches to estimating flood frequency -- 7.6 Probable maximum precipitation (PMP) -- 7.7 Probable maximum flood (PMF) -- 7.8 Flood Studies Report (FSR) -- 7.9 Flood Estimation Handbook (FEH) -- Appendix 7.1 Three-dimensional description of a rainfall surface -- Appendix 7.2 Gumbel distribution -- Summary of key points in this chapter -- Problems -- References -- Chapter 8 Precipitation Forecasting -- 8.1 Introduction -- 8.2 Nowcasting -- 8.2.1 Definition -- 8.2.2 Impact of errors in precipitation measurements -- 8.2.3 Extrapolation of radar data -- 8.3 Probabilistic radar nowcasting -- 8.4 Numerical models: structure, data requirements, data assimilation -- 8.4.1 Probabilistic quantitative precipitation forecasting -- 8.4.2 Mesoscale models -- 8.4.3 Data assimilation -- 8.4.4 Performance of high resolution mesoscale model‐based nowcasting systems -- 8.5 Medium range forecasting -- 8.6 Seasonal forecasting -- Appendix 8.1 Brier skill score -- Summary of key points in this chapter -- Problems -- References -- Chapter 9 Flow Forecasting -- 9.1 Basic flood forecasting techniques -- 9.2 Model calibration and equifinality -- 9.3 Flood forecasting model development -- 9.4 Conversion of detailed hydrodynamic models to simplified models suitable for real‐time flood forecasting -- 9.5 Probabilistic flood forecasting and decision support methods -- 9.6 Derivation of station rating (stage‐discharge) curves -- 9.7 Performance testing of forecasting models and updating procedures -- 9.8 Configuration of models on to national and international forecasting platforms.

9.9 Flood warnings and levels of service -- 9.9.1 United Kingdom -- 9.9.2 United States and Canada -- 9.10 Case studies worldwide: river and urban -- Appendix 9.1 St Venant equations -- Appendix 9.2 Flow in unsaturated and saturated zones -- Summary of key points in this chapter -- Problems -- References -- Chapter 10 Coastal Flood Forecasting -- 10.1 Types of coastal flooding -- 10.2 Models used to predict storm surge flooding -- 10.2.1 Empirical models -- 10.2.2 First-generation models -- 10.2.3 Second-generation models -- 10.2.4 Third-generation models -- 10.2.5 Wave, tide and surge models -- 10.3 Probabilistic surge forecasting -- 10.4 Tsunamis -- 10.5 Examples of coastal flooding in the United Kingdom -- 10.5.1 The surge of 1953 -- 10.5.2 Wirral floods 2013 -- 10.5.3 Surges along the east coast of England, December 2013 -- 10.5.4 Aberystwyth floods January 2014 -- 10.6 Some examples of coastal flooding worldwide -- Appendix 10.1 Wave overtopping at the coast -- Summary of key points in this chapter -- Problems -- References -- Chapter 11 Drought -- 11.1 Definitions -- 11.2 Drought indices -- 11.3 The physics of drought -- 11.4 Frequency analysis: predictability -- 11.5 Modelling the occurrence of drought -- 11.6 Major drought worldwide -- 11.7 Examples of the consequences of drought -- 11.8 Strategies for drought protection, mitigation or relief -- Appendix 11.1 Defining aridity -- Summary of key points in this chapter -- Problems -- References -- Chapter 12 Wind and the Global Circulation -- 12.1 Equations of motion -- 12.2 Atmospheric Ekman layer -- 12.3 Fronts -- 12.4 Jet streams -- 12.5 Hurricanes -- 12.6 Lee waves -- 12.7 Land and sea breezes -- 12.8 The wind structure of the atmospheric circulation -- 12.9 Hadley cell -- 12.10 Polar cell -- 12.11 Ferrel cell -- 12.12 Walker circulation -- 12.13 El Niño/Southern Oscillation.

12.14 Monsoons.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.