Handbook of Fuels : Energy Sources for Transportation.
Material type:
- text
- computer
- online resource
- 9783527813483
- 662.6
- TP318 .H363 2022
Cover -- Title Page -- Copyright -- Contents -- Preface to the Second Edition -- Preface to the First Edition -- Chapter 1 Introduction -- 1.1 History of the Spark Ignited "Otto" Engine and of Gasoline -- 1.2 History of the Diesel Engine and of Diesel Fuel -- 1.3 History of Alternative Fuels -- 1.3.1 Ethanol -- 1.3.2 Methanol -- 1.3.3 Vegetable Oils and Hydrotreated Vegetable Oils (HVOs) -- 1.3.4 Biodiesel/FAME -- 1.3.5 Liquefied Petroleum Gas (LPG) -- 1.3.6 Natural Gas -- 1.4 Emission Regulations Worldwide -- 1.4.1 Europe -- 1.4.2 United States -- 1.4.3 Japan -- 1.4.4 China -- 1.5 Well‐to‐Wheel Analysis of Alternative Fuels -- 1.5.1 Life‐cycle Assessment -- 1.5.2 Well‐to‐Wheel -- 1.5.3 Boundary Conditions of the JRC Study -- 1.5.4 Summary of Results of the JRC Study -- 1.5.4.1 Alternative Liquid Fuels -- 1.5.4.2 Alternative Gaseous Fuels -- 1.5.4.3 Electricity and Hydrogen -- 1.5.4.4 2020+ Horizon -- References -- Part I Automotive Fuels -- Chapter 2 Engine Technology -- 2.1 Otto Engines -- 2.2 Diesel Engines -- References -- Chapter 3 Fuel Composition and Engine Efficiency -- 3.1 Fuel Composition and Engine Efficiency -- 3.1.1 Quality Aspects of Gasoline -- 3.1.1.1 Octane Quality -- 3.1.1.2 Volatility -- 3.1.1.3 Fuel Composition to Reduce Toxicity and Exhaust Emissions -- 3.1.1.4 Stability, Cleanliness, etc. -- 3.1.1.5 Performance Additives -- 3.1.2 Quality Aspects of Diesel Fuels -- 3.1.2.1 Ignition Quality -- 3.1.2.2 Density -- 3.1.2.3 Sulfur Content -- 3.1.2.4 Cold Flow Properties -- 3.1.2.5 Lubricity -- 3.1.2.6 Viscosity -- 3.1.2.7 Volatility -- 3.1.2.8 Diesel Fuel Stability, Cleanliness, and Safety -- 3.1.2.9 Diesel Fuel Effects on Exhaust Emissions -- 3.1.2.10 Performance Additives -- References -- Chapter 4 Fuel Components: Petroleum‐derived Fuels -- 4.1 Petroleum‐derived Fuels -- 4.1.1 Gasoline Components.
4.1.1.1 Straight‐run Gasoline -- 4.1.1.2 Thermally Cracked Gasoline -- 4.1.1.3 Catalytically Cracked Gasoline -- 4.1.1.4 Catalytic Reformate (Platformate) -- 4.1.1.5 Isomerate -- 4.1.1.6 Alkylate -- 4.1.1.7 Polymer Gasoline -- 4.1.1.8 Oxygenates -- 4.1.2 Diesel Fuel Components -- 4.1.2.1 Straight‐run Middle Distillate -- 4.1.2.2 Thermally Cracked Gas Oil -- 4.1.2.3 Catalytically Cracked Gas Oil -- 4.1.2.4 Hydrocracked Gas Oil -- 4.1.2.5 Kerosene -- 4.1.2.6 Biofuel Components -- 4.1.2.7 Synthetic Diesel Fuel -- 4.1.3 Storage and Transportation -- References -- Chapter 5 Liquefied Petroleum Gas -- 5.1 Introduction -- 5.2 Properties -- 5.3 Production and Processing -- 5.3.1 Recovery from Natural Gas -- 5.3.1.1 Recovery and Manufacture in the Refinery -- 5.4 Purification -- 5.4.1 Adsorptive Purification -- 5.4.2 Absorptive Purification -- 5.5 Storage and Transportation -- 5.5.1 Aboveground Storage -- 5.5.2 Underground Storage -- 5.5.3 Transportation -- 5.6 Uses -- 5.6.1 LPG Standards and Regulations -- 5.6.1.1 Refueling Infrastructure -- 5.6.1.2 Vehicle Conversions to LPG -- 5.6.2 Environmental Benefits -- 5.6.2.1 Outlook -- 5.7 Safety Aspects -- 5.7.1 Occupational Health -- References -- Chapter 6 Natural Gas -- 6.1 Occurrence -- 6.2 Composition -- 6.3 Processing -- 6.3.1 Oil and Condensate Removal -- 6.3.2 Water Removal -- 6.3.3 Separation of Natural Gas Liquids -- 6.3.3.1 Cryogenic Expansion Process -- 6.3.4 Sulfur and Carbon Dioxide Removal -- 6.4 Transport/Distribution/Local Blending -- 6.5 Properties and Specifications -- 6.6 Natural Gas as Automotive Fuel -- 6.6.1 Vehicle Refueling Systems -- 6.6.1.1 Slow‐Fill Refueling -- 6.6.1.2 Fast‐Fill Refueling -- 6.6.2 Vehicle and Engine Concepts -- 6.6.2.1 Vehicle Technology -- 6.6.3 CNG Vehicles in the Market -- 6.6.4 Vehicle Fuel Supply System -- 6.6.5 Combustion and Emissions -- 6.7 Safety Aspects.
6.8 Biomethane -- 6.8.1 Production -- 6.8.1.1 Anaerobic Fermentation -- 6.8.1.2 Biogas from Solids -- 6.8.2 Upgrading of Biogas to Natural Gas Quality -- 6.8.2.1 Water Scrubbing and Physical Scrubbing -- 6.8.2.2 Chemical Absorption -- 6.8.2.3 Membrane Separation -- 6.8.2.4 Pressure Swing Adsorption (PSA) -- 6.8.2.5 Cryogenic Separation -- 6.8.3 Storage and Transportation -- 6.8.3.1 Storage -- 6.8.3.2 Distribution -- 6.8.4 Biomethane Regulations -- 6.8.4.1 Regulations and Standards -- 6.8.5 Well‐to‐wheel Analysis for LPG, CNG, and Biomethane -- 6.8.5.1 Well‐to‐Tank Analysis -- 6.8.5.2 Compressed Biomethane (CBM) -- 6.8.5.3 Well‐to‐Wheels Analysis -- References -- Chapter 7 Synthetic Diesel Fuels -- 7.1 XTL Fuels -- 7.1.1 History -- 7.1.2 XTL Production Process -- 7.1.2.1 Fischer-Tropsch Process -- 7.1.2.2 IH2 Technology -- 7.1.2.3 BTL Fuels -- 7.1.3 GTL and BTL Fuel Characteristics -- 7.1.3.1 Cold Flow Performance (Figure ) -- 7.1.3.2 Lubricity Performance -- 7.1.3.3 Impact on Injector Cleanliness and Spray Characteristics -- 7.1.3.4 Advantages of Synthetic Fuels for Emission Control -- 7.1.4 Outlook -- 7.2 DME (Dimethyl Ether) and OME Fuels -- 7.2.1 Introduction -- 7.2.2 Fuel Standards -- 7.2.3 Fuel Properties -- 7.2.4 Infrastructure and Safety -- 7.2.4.1 Use as Fuel -- 7.3 Well‐to‐Wheel (WTW) Analysis for XTL and DME Fuels -- 7.3.1 Well‐to‐Wheels Analysis for XTL -- 7.3.2 Well‐to‐Tank Analysis for DME -- 7.4 Well‐to‐Wheel Analysis for XTL and DME -- References -- Chapter 8 Synthetic Gasoline Fuels -- 8.1 GTL Naphtha -- 8.2 Methanol to Gasoline Process (MTG) -- 8.3 Production Process -- 8.4 Fuel Properties -- References -- Chapter 9 Ethanol -- 9.1 Production -- 9.1.1 Milling -- 9.1.2 Processing of Starch/Maize Mash -- 9.1.3 Fermentation of Glucose -- 9.1.4 Distillation and Increase of Ethanol Concentration -- 9.2 Feedstock -- 9.3 Land Use.
9.3.1 Direct Land Use Change Emissions (DLUC) -- 9.3.2 Indirect Land Use Change (ILUC) -- 9.4 Nitrogen Oxide Emissions -- 9.5 Water Foot Print and Impact on Water Table -- 9.6 Other Environmental Effects -- 9.6.1 Soil Quality/Erosion -- 9.6.2 Eutrophication and Acidification -- 9.6.3 Biodiversity -- 9.7 Bioethanol Made from Lignocellulose -- 9.8 Fuel Standards -- 9.9 Fuel Properties -- 9.9.1 Octane Number -- 9.9.1.1 Volatility and Distillation -- 9.9.1.2 Heat of Vaporization -- 9.9.1.3 Energy Content -- 9.9.1.4 Water Content -- 9.9.1.5 Corrosion Protection -- 9.9.1.6 Denaturant and Denaturant Content -- 9.9.1.7 Material Compatibility -- 9.9.1.8 Lubricity -- 9.9.1.9 Emissions -- 9.10 Well‐to‐Wheels Analysis for Fuel Ethanol and Ethanol Gasoline Blends -- 9.10.1 Pathways -- 9.10.1.1 Sugar Beet to Ethanol -- 9.10.1.2 Wheat to Ethanol -- 9.10.1.3 Straw to Ethanol -- 9.11 WTT Analysis for Bioethanol -- 9.12 WTW Analysis -- References -- Chapter 10 Methanol -- 10.1 Introduction -- 10.2 Physical and Chemical Properties -- 10.3 Production of Methanol -- 10.3.1 Methanol Production Capacities and Markets -- 10.3.2 Conventional Methanol Production Processes -- 10.3.2.1 Synthesis Gas Generation -- 10.3.2.2 Methanol Synthesis -- 10.3.2.3 Liquid Phase Methanol Synthesis (LPMEOH®) -- 10.3.2.4 Methanol Distillation -- 10.3.3 Renewable Methanol Production Processes -- 10.3.3.1 CO2 - Hydrogenation -- 10.4 Methanol as Fuel -- 10.4.1 History -- 10.4.2 Uses -- 10.4.2.1 Methanol as a Fuel for Otto Engines -- 10.4.2.2 Vehicle Developments -- 10.4.2.3 Conclusions -- 10.4.2.4 Methanol as Marine Fuel -- 10.4.3 Safety Aspects -- 10.4.3.1 Explosion and Fire Control -- 10.4.3.2 Fire Prevention -- 10.4.3.3 Fire Fighting -- 10.4.3.4 Small‐scale Storage -- 10.4.3.5 Large‐scale Storage -- 10.4.3.6 Large‐scale Transportation -- 10.4.3.7 Safety Regulations Governing Transportation.
10.4.3.8 Methanol as a Hazard -- 10.5 Methanol‐based Derivatives as Fuels and Fuel Additives -- 10.5.1 Methanol‐to‐Gasoline (MTG) -- 10.5.2 Methyl tert‐Butyl Ether (MTBE) -- 10.5.3 tert‐Amyl Methyl Ether (TAME) -- 10.5.4 Dimethyl Ether (DME) -- 10.5.5 Oxymethylene Ether (OME) -- 10.5.6 Dimethyl Carbonate (DMC) and Methyl Formate (MF) -- 10.6 Economic Aspects -- 10.6.1 Gas‐based Methanol -- 10.6.2 Coal‐based Methanol -- 10.6.3 Biomass‐based Methanol -- 10.6.4 Renewable Methanol Based on the Recycle of Carbon Dioxide -- 10.7 Outlook -- References -- Chapter 11 2,5‐Dimethylfuran (DMF) and 2‐Methylfuran (MF) -- 11.1 Synthesis of Dimethylfuran -- 11.2 Properties of 2,5‐Dimethylfuran and Methylfuran -- 11.3 Combustion and Emissions -- References -- Chapter 12 Alternative Biofuel Options - Diesel -- 12.1 Biomass‐to‐Liquids (BTL) -- 12.2 Biodiesel (FAME) -- 12.2.1 Production -- 12.2.1.1 Introduction -- 12.2.1.2 Industrial Process -- 12.2.1.3 Feedstock -- 12.2.1.4 Microalgae -- 12.2.2 Analytical Methods -- 12.2.2.1 Ester Content and Fatty Acid Composition -- 12.2.2.2 Polyunsaturated Methyl Esters Content -- 12.2.2.3 Glycerol and Glyceride Content -- 12.2.3 Fuel Standards -- 12.2.3.1 United States -- 12.2.3.2 Europe -- 12.2.4 Fuel Properties -- 12.2.4.1 Cetane Number -- 12.2.4.2 Density and Energy Content -- 12.2.4.3 Kinematic Viscosity -- 12.2.4.4 Cold Temperature Properties -- 12.2.4.5 Filterability -- 12.2.4.6 Distillation -- 12.2.4.7 Fuel Stability -- 12.2.4.8 Water Content and Sediment -- 12.2.4.9 Lubricity -- 12.2.4.10 Material Compatibility4 -- 12.2.4.11 Engine Deposits -- 12.2.4.12 Emissions -- 12.3 Vegetable Oils (VO) -- 12.3.1 Production -- 12.3.2 Fuel Properties -- 12.3.2.1 Kinematic Viscosity -- 12.3.2.2 Cetane Number -- 12.3.2.3 Flash Point -- 12.3.2.4 Carbon Residue -- 12.3.2.5 Heating Value -- 12.3.2.6 Density -- 12.3.2.7 Iodine Number.
12.3.2.8 Fuel Stability.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.