ORPP logo
Image from Google Jackets

Text Analytics for Business Decisions : A Case Study Approach.

By: Material type: TextTextPublisher: Bloomfield : Mercury Learning & Information, 2021Copyright date: ©2021Edition: 1st edDescription: 1 online resource (332 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781683926658
Subject(s): Genre/Form: Additional physical formats: Print version:: Text Analytics for Business DecisionsDDC classification:
  • 006.312
LOC classification:
  • QA76.73.P98
Online resources:
Contents:
Intro -- Contents -- Preface -- On the Companion Files -- Acknowledgements -- Chapter 1 : Framing Analytical Questions -- Data is the New Oil -- The World of the Business Data Analyst -- How Does Data Analysis Relate to Decision Making? -- How Do We Frame Analytical Questions? -- What are the Characteristics of Well-framed Analytical Questions? -- Exercise 1.1 - Case Study Using Dataset K: Titanic Disaster -- What are Some Examples of Text-Based Analytical Questions? -- Additional Case Study Using Dataset J: Remote Learning Student Survey -- References -- Chapter 2 : Analytical Tool Sets -- Tool Sets for Text Analytics -- Excel -- Microsoft Word -- Adobe Acrobat -- SAS JMP -- R and RStudio -- Voyant -- Java -- Stanford Named Entity Recognizer (NER) -- Topic Modeling Tool -- References -- Chapter 3 : Text Data Sources and Formats -- Sources and Formats of Text Data -- Social Media Data -- Customer opinion data from commercial sites -- Email -- Documents -- Surveys -- Websites -- Chapter 4 : Preparing the Data File -- What is Data Shaping? -- The Flat File Format -- Shaping the Text Variable in a Table -- Bag-of-Words Representation -- Single Text Files -- Exercise 4.1 - Case Study Using Dataset L: Resumes -- Exercise 4.2 - Case Study Using Dataset D: Occupation Descriptions -- Additional Exercise 4.3 - Case Study Using Dataset I: NAICS Codes -- Aggregating Across Rows and Columns -- Exercise 4.4 - Case Study Using Dataset D: Occupation Descriptions -- Additional Advanced Exercise 4.5 - Case Study Using Dataset E: Large Data Files -- Additional Advanced Exercise 4.6 - Case Study Using Dataset F: The Federalist Papers -- References -- Chapter 5 : Word Frequency Analysis -- What is Word Frequency Analysis? -- How Does It Apply to Text Business Data Analysis? -- Exercise 5.1 - Case Study Using Dataset A: Training Survey.
Exercise 5.2 - Case Study Using Dataset D: Job Descriptions -- Exercise 5.3 - Case Study Using Dataset C: Product Reviews -- Additional Exercise 5.4 - Case Study Using Dataset B: Consumer Complaints -- Chapter 6 : Keyword Analysis -- Exercise 6.1 - Case Study Using Dataset D: Resume and Job Description -- Exercise 6.2 - Case Study Using Dataset G: University Curriculum -- Exercise 6.3 - Case Study Using Dataset C: Product Reviews -- Additional Exercise 6.4 - Case Study Using Dataset B: Customer Complaints -- Chapter 7 : Sentiment Analysis -- What is Sentiment Analysis? -- Exercise 7.1 - Case Study Using Dataset C: Product Reviews - Rubbermaid -- Exercise 7.2 - Case Study Using Dataset C: Product Reviews-Windex -- Exercise 7.3 - Case Study Using Dataset C: Product Reviews-Both Brands -- Chapter 8 : Visualizing Text Data -- What Is Data Visualization Used For? -- Exercise 8.1 - Case Study Using Dataset A: Training Survey -- Exercise 8.2 - Case Study Using Dataset B: Consumer Complaints -- Exercise 8.3 - Case Study Using Dataset C: Product Reviews -- Exercise 8.4 - Case Study Using Dataset E: Large Text Files -- References -- Chapter 9 : Coding Text Data -- What is a Code? -- What are the Common Approaches to Coding Text Data? -- What is Inductive Coding? -- Exercise 9.1 - Case Study Using Dataset A: Training -- Exercise 9.2 - Case Study Using Dataset J: Remote Learning -- Exercise 9.3 - Case Study Using Dataset E: Large Text Files -- Affinity Diagram Coding -- Exercise 9.4 - Case Study Using Dataset M: Onboarding Brainstorming -- References -- Chapter 10 : Named Entity Recognition -- Named Entity Recognition -- What is a Named Entity? -- Common Approaches to Extracting Named Entities -- Classifiers - The Core NER Process -- What Does This Mean for Business? -- Exercise 10.1 - Using the Stanford NER -- Exercise 10.2 - Example Cases.
Exercise 10.2 - Case Study Using Dataset H: Corporate Financial Reports -- Additional Exercise 10.3 - Case Study Using Dataset L: Corporate Financial Reports -- Exercise 10.4 - Case Study Using Dataset E: Large Text Files -- Additional Exercise 10.5 - Case Study Using Dataset E: Large Text Files -- References -- Chapter 11 : Topic Recognition in Documents -- Information Retrieval -- Document Characterization -- Topic Recognition -- Exercises -- Exercise 11.1 - Case Study Using Dataset G: University Curricula -- Exercise 11.2 - Case Study Using Dataset E: Large Text Files -- Exercise 11.3 - Case Study Using Dataset E: Large Text Files -- Exercise 11.4 - Case Study Using Dataset E: Large Text Files -- Exercise 11.5 - Case Study Using Dataset E: Large Text Files -- Additional Exercise 11.6 - Case Study Using Dataset P: Patents -- Additional Exercise 11.7 - Case Study Using Dataset F: Federalist Papers -- Additional Exercise 11.8 - Case Study Using Dataset E: Large Text Files -- Additional Exercise 11.9- Case Study Using Dataset N: Sonnets -- References -- Chapter 12 : Text Similarity Scoring -- What is Text Similarity Scoring? -- Text Similarity Scoring Exercises -- Exercise 12.1 - Case Study Using Dataset D: Occupation Description -- Analysis using R -- Exercise 12.2 - Case D: Resume and Job Description -- Reference -- Chapter 13 : Analysis of Large Datasets by Sampling -- Using Sampling to Work with Large Data Files -- Exercise 13.1 - Big Data Analysis -- Additional Case Study Using Dataset E: BankComplaints Big Data File -- Chapter 14 : Installing R and RStudio -- Installing R -- Install R Software for a Mac System -- Installing RStudio -- Reference -- Chapter 15 : Installing the Entity Extraction Tool -- Downloading and Installing the Tool -- The NER Graphical User Interface -- Reference -- Chapter 16 : Installing the Topic Modeling Tool.
Installing and Using the Topic Modeling Tool -- Install the tool -- For Macs -- For Windows PCs -- UTF-8 caveat -- Setting up the workspace -- Workspace Directory -- Using the Tool -- Select metadata file -- Selecting the number of topics -- Analyzing the Output -- Multiple Passes for Optimization -- The Output Files -- Chapter 17 : Installing the Voyant Text Analysis Tool -- Install or Update Java -- Installation of Voyant Server -- The Voyant Server -- Downloading VoyantServer -- Running Voyant Server -- Controlling the Voyant Server -- Testing the Installation -- Reference -- INDEX.
Summary: No detailed description available for "Text Analytics for Business Decisions".
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Contents -- Preface -- On the Companion Files -- Acknowledgements -- Chapter 1 : Framing Analytical Questions -- Data is the New Oil -- The World of the Business Data Analyst -- How Does Data Analysis Relate to Decision Making? -- How Do We Frame Analytical Questions? -- What are the Characteristics of Well-framed Analytical Questions? -- Exercise 1.1 - Case Study Using Dataset K: Titanic Disaster -- What are Some Examples of Text-Based Analytical Questions? -- Additional Case Study Using Dataset J: Remote Learning Student Survey -- References -- Chapter 2 : Analytical Tool Sets -- Tool Sets for Text Analytics -- Excel -- Microsoft Word -- Adobe Acrobat -- SAS JMP -- R and RStudio -- Voyant -- Java -- Stanford Named Entity Recognizer (NER) -- Topic Modeling Tool -- References -- Chapter 3 : Text Data Sources and Formats -- Sources and Formats of Text Data -- Social Media Data -- Customer opinion data from commercial sites -- Email -- Documents -- Surveys -- Websites -- Chapter 4 : Preparing the Data File -- What is Data Shaping? -- The Flat File Format -- Shaping the Text Variable in a Table -- Bag-of-Words Representation -- Single Text Files -- Exercise 4.1 - Case Study Using Dataset L: Resumes -- Exercise 4.2 - Case Study Using Dataset D: Occupation Descriptions -- Additional Exercise 4.3 - Case Study Using Dataset I: NAICS Codes -- Aggregating Across Rows and Columns -- Exercise 4.4 - Case Study Using Dataset D: Occupation Descriptions -- Additional Advanced Exercise 4.5 - Case Study Using Dataset E: Large Data Files -- Additional Advanced Exercise 4.6 - Case Study Using Dataset F: The Federalist Papers -- References -- Chapter 5 : Word Frequency Analysis -- What is Word Frequency Analysis? -- How Does It Apply to Text Business Data Analysis? -- Exercise 5.1 - Case Study Using Dataset A: Training Survey.

Exercise 5.2 - Case Study Using Dataset D: Job Descriptions -- Exercise 5.3 - Case Study Using Dataset C: Product Reviews -- Additional Exercise 5.4 - Case Study Using Dataset B: Consumer Complaints -- Chapter 6 : Keyword Analysis -- Exercise 6.1 - Case Study Using Dataset D: Resume and Job Description -- Exercise 6.2 - Case Study Using Dataset G: University Curriculum -- Exercise 6.3 - Case Study Using Dataset C: Product Reviews -- Additional Exercise 6.4 - Case Study Using Dataset B: Customer Complaints -- Chapter 7 : Sentiment Analysis -- What is Sentiment Analysis? -- Exercise 7.1 - Case Study Using Dataset C: Product Reviews - Rubbermaid -- Exercise 7.2 - Case Study Using Dataset C: Product Reviews-Windex -- Exercise 7.3 - Case Study Using Dataset C: Product Reviews-Both Brands -- Chapter 8 : Visualizing Text Data -- What Is Data Visualization Used For? -- Exercise 8.1 - Case Study Using Dataset A: Training Survey -- Exercise 8.2 - Case Study Using Dataset B: Consumer Complaints -- Exercise 8.3 - Case Study Using Dataset C: Product Reviews -- Exercise 8.4 - Case Study Using Dataset E: Large Text Files -- References -- Chapter 9 : Coding Text Data -- What is a Code? -- What are the Common Approaches to Coding Text Data? -- What is Inductive Coding? -- Exercise 9.1 - Case Study Using Dataset A: Training -- Exercise 9.2 - Case Study Using Dataset J: Remote Learning -- Exercise 9.3 - Case Study Using Dataset E: Large Text Files -- Affinity Diagram Coding -- Exercise 9.4 - Case Study Using Dataset M: Onboarding Brainstorming -- References -- Chapter 10 : Named Entity Recognition -- Named Entity Recognition -- What is a Named Entity? -- Common Approaches to Extracting Named Entities -- Classifiers - The Core NER Process -- What Does This Mean for Business? -- Exercise 10.1 - Using the Stanford NER -- Exercise 10.2 - Example Cases.

Exercise 10.2 - Case Study Using Dataset H: Corporate Financial Reports -- Additional Exercise 10.3 - Case Study Using Dataset L: Corporate Financial Reports -- Exercise 10.4 - Case Study Using Dataset E: Large Text Files -- Additional Exercise 10.5 - Case Study Using Dataset E: Large Text Files -- References -- Chapter 11 : Topic Recognition in Documents -- Information Retrieval -- Document Characterization -- Topic Recognition -- Exercises -- Exercise 11.1 - Case Study Using Dataset G: University Curricula -- Exercise 11.2 - Case Study Using Dataset E: Large Text Files -- Exercise 11.3 - Case Study Using Dataset E: Large Text Files -- Exercise 11.4 - Case Study Using Dataset E: Large Text Files -- Exercise 11.5 - Case Study Using Dataset E: Large Text Files -- Additional Exercise 11.6 - Case Study Using Dataset P: Patents -- Additional Exercise 11.7 - Case Study Using Dataset F: Federalist Papers -- Additional Exercise 11.8 - Case Study Using Dataset E: Large Text Files -- Additional Exercise 11.9- Case Study Using Dataset N: Sonnets -- References -- Chapter 12 : Text Similarity Scoring -- What is Text Similarity Scoring? -- Text Similarity Scoring Exercises -- Exercise 12.1 - Case Study Using Dataset D: Occupation Description -- Analysis using R -- Exercise 12.2 - Case D: Resume and Job Description -- Reference -- Chapter 13 : Analysis of Large Datasets by Sampling -- Using Sampling to Work with Large Data Files -- Exercise 13.1 - Big Data Analysis -- Additional Case Study Using Dataset E: BankComplaints Big Data File -- Chapter 14 : Installing R and RStudio -- Installing R -- Install R Software for a Mac System -- Installing RStudio -- Reference -- Chapter 15 : Installing the Entity Extraction Tool -- Downloading and Installing the Tool -- The NER Graphical User Interface -- Reference -- Chapter 16 : Installing the Topic Modeling Tool.

Installing and Using the Topic Modeling Tool -- Install the tool -- For Macs -- For Windows PCs -- UTF-8 caveat -- Setting up the workspace -- Workspace Directory -- Using the Tool -- Select metadata file -- Selecting the number of topics -- Analyzing the Output -- Multiple Passes for Optimization -- The Output Files -- Chapter 17 : Installing the Voyant Text Analysis Tool -- Install or Update Java -- Installation of Voyant Server -- The Voyant Server -- Downloading VoyantServer -- Running Voyant Server -- Controlling the Voyant Server -- Testing the Installation -- Reference -- INDEX.

No detailed description available for "Text Analytics for Business Decisions".

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.