ORPP logo
Image from Google Jackets

Efficient Petrochemical Processes : Technology, Design and Operation.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2019Copyright date: ©2019Edition: 1st edDescription: 1 online resource (425 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119487876
Subject(s): Genre/Form: Additional physical formats: Print version:: Efficient Petrochemical ProcessesDDC classification:
  • 661/.8
LOC classification:
  • QD331 .Z48 2020
Online resources:
Contents:
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Part I Market, Design and Technology Overview -- Chapter 1 Overview of This Book -- 1.1 Why Petrochemical Products Are Important for the Economy -- 1.1.1 Polyethylene -- 1.1.2 Polypropylene -- 1.1.3 Styrene and Polystyrene -- 1.1.4 Polyester -- 1.1.5 Polycarbonate and Phenolic Resins -- 1.1.6 Economic Significance of Polymers -- 1.1.7 Petrochemicals and Petroleum Utilization -- 1.2 Overall Petrochemical Configurations -- 1.3 Context of Process Designs and Operation for Petrochemical Production -- 1.4 Who Is This Book Written For? -- Chapter 2 Market and Technology Overview -- 2.1 Overview of Aromatic Petrochemicals -- 2.2 Introduction and Market Information -- 2.2.1 Benzene -- 2.2.2 Benzene Production Technologies -- 2.2.3 Toluene -- 2.2.4 Toluene Production Technologies -- 2.2.5 Ethylbenzene/Styrene -- 2.2.6 Ethylbenzene/Styrene Production Technologies -- 2.2.7 para-Xylene -- 2.2.8 para-Xylene Production Technologies -- 2.2.9 meta-Xylene -- 2.2.10 meta-Xylene Production Technologies -- 2.2.11 ortho-Xylene -- 2.2.12 ortho-Xylene Production Technologies -- 2.2.13 Cumene/Phenol -- 2.2.14 Cumene/Phenol Production Technologies -- 2.3 Technologies in Aromatics Synthesis -- 2.4 Alternative Feeds for Aromatics -- 2.5 Technologies in Aromatic Transformation -- 2.5.1 Transalkylation -- 2.5.2 Selective Toluene Disproportionation -- 2.5.3 Thermal Hydro-Dealkylation -- 2.5.4 Xylene Isomerization -- 2.6 Technologies in Aromatic Separations -- 2.6.1 Liquid-Liquid Extraction and Extractive Distillation -- 2.6.2 Liquid-Liquid Extraction -- 2.6.3 Extractive Distillation (ED) -- 2.7 Separations by Molecular Weight -- 2.8 Separations by Isomer Type: para-Xylene -- 2.8.1 Crystallization of para-Xylene -- 2.8.2 Adsorptive Separation of para-Xylene.
2.9 Separations by Isomer Type: meta-Xylene -- 2.10 Separations by Isomer Type: ortho-Xylene and Ethylbenzene -- 2.11 Other Related Aromatics Technologies -- 2.11.1 Cyclohexane -- 2.11.2 Ethylbenzene/Styrene -- 2.11.3 Cumene/Phenol/Bisphenol-A -- 2.11.4 Linear Alkyl Benzene Sulfonate for Detergents -- 2.11.5 Oxidation of para- and meta-Xylene -- 2.11.6 Melt-Phase Polymerization of PTA to PET -- 2.11.7 Melt-Phase Polymerization and Solid State Polycondensation of PET Resin -- 2.11.8 Oxidation of ortho-Xylene -- 2.12 Integrated Refining and Petrochemicals -- References -- Chapter 3 Aromatics Process Description -- 3.1 Overall Aromatics Flow Scheme -- 3.2 Adsorptive Separations for para-Xylene -- 3.3 Technologies for Treating Feeds for Aromatics Production -- 3.4 para-Xylene Purification and Recovery by Crystallization -- 3.5 Transalkylation Processes -- 3.6 Xylene Isomerization -- 3.7 Adsorptive Separation of Pure meta-Xylene -- 3.8 para-Selective Catalytic Technologies for para-Xylene -- 3.8.1 para-Selective Toluene Disproportionation -- 3.8.2 para-Selective Toluene Methylation -- References -- Part II Process Design -- Chapter 4 Aromatics Process Unit Design -- 4.1 Introduction -- 4.2 Aromatics Fractionation -- 4.2.1 Reformate Splitter -- 4.2.2 Xylene Fractionation -- 4.2.3 Heavy Aromatics Fractionation -- 4.3 Aromatics Extraction -- 4.3.1 Liquid-Liquid Extraction -- 4.3.1.1 Operating Variables -- 4.3.2 Extractive Distillation -- 4.3.2.1 Operating Variables -- 4.4 Transalkylation -- 4.4.1 Process Flow Description -- 4.4.1.1 Combined Feed Exchanger -- 4.4.1.2 Charge Heater -- 4.4.1.3 Reactor Design -- 4.4.1.4 Catalyst Volume -- 4.4.1.5 Bed Pressure Drop -- 4.4.1.6 Reactor Bed Dimensions -- 4.4.1.7 Products Condenser -- 4.4.1.8 Separator -- 4.4.1.9 Recycle Gas Purity -- 4.4.1.10 Recycle Gas Compressor -- 4.5 Xylene Isomerization.
4.5.1 Combined Feed Exchanger -- 4.5.2 Charge Heater -- 4.5.3 Reactor Design -- 4.5.4 Catalyst Volume -- 4.5.5 Radial Flow Reactor Sizing -- 4.5.6 Products Condenser -- 4.5.7 Separator -- 4.5.8 Recycle Gas Purity -- 4.5.9 Recycle Gas Compressor -- 4.6 para-Xylene Separation -- 4.7 Process Design Considerations: Design Margin Philosophy -- 4.7.1 Equipment Design Margins -- 4.7.1.1 Fired Heaters -- 4.7.1.2 Process-Process Heat Exchangers and Water-Cooled Heat Exchangers -- 4.7.1.3 Air-Cooled Heat Exchangers -- 4.7.1.4 Pumps -- 4.7.1.5 Compressors -- 4.7.1.6 Fractionation Columns -- 4.7.1.7 Reactors -- 4.8 Process Design Considerations: Operational Flexibility -- 4.9 Process Design Considerations: Fractionation Optimization -- 4.10 Safety Considerations -- 4.10.1 Reducing Exposure to Hazardous Materials -- 4.10.2 Process Hazard Analysis (PHA) -- 4.10.3 Hazard and Operability (HAZOP) Study -- Further Reading -- Chapter 5 Aromatics Process Revamp Design -- 5.1 Introduction -- 5.2 Stages of Revamp Assessment and Types of Revamp Studies -- 5.3 Revamp Project Approach -- 5.3.1 Specified Target Capacity -- 5.3.2 Target Production with Constraints -- 5.3.3 Maximize Throughput at Minimum Cost -- 5.3.4 Identify Successive Bottlenecks -- 5.4 Revamp Study Methodology and Strategies -- 5.5 Setting the Design Basis for Revamp Projects -- 5.5.1 Agreement -- 5.5.2 Processing Objectives -- 5.5.3 Define the Approach of the Study -- 5.5.4 Feedstock and Make-Up Gas -- 5.5.5 Product Specifications -- 5.5.6 Getting the Right Equipment Information -- 5.5.7 Operating Data or Test Run Data -- 5.5.8 Constraints -- 5.5.9 Utilities -- 5.5.10 Replacement Equipment Options -- 5.5.11 Guarantees -- 5.5.12 Economic Evaluation Criteria -- 5.6 Process Design for Revamp Projects -- 5.6.1 Adjusting Operating Conditions -- 5.6.2 Design Margin -- 5.7 Revamp Impact on Utilities.
5.8 Equipment Evaluation for Revamps -- 5.8.1 Fired Heater Evaluation -- 5.8.1.1 Data Required -- 5.8.1.2 Fired Heater Evaluation -- 5.8.1.3 Heater Design Limitations -- 5.8.1.4 Radiant Flux Limits -- 5.8.1.5 TWT Limits -- 5.8.1.6 Metallurgy -- 5.8.1.7 Tube Thickness -- 5.8.1.8 Coil Pressure Drop -- 5.8.1.9 Burners -- 5.8.1.10 Stack -- 5.8.2 Vessels: Separators, Receivers, and Drums -- 5.8.2.1 Data Required -- 5.8.2.2 Separator, Receiver, and Drum Evaluation -- 5.8.2.3 Process and Other Modifications -- 5.8.2.4 Test Run Data -- 5.8.2.5 Possible Recommendations -- 5.8.3 Reactors -- 5.8.3.1 Data Required -- 5.8.3.2 Reactor Process Evaluation -- 5.8.3.3 Process and Other Modifications -- 5.8.3.4 Test Run Data -- 5.8.3.5 Possible Recommendations -- 5.8.4 Fractionator Evaluation -- 5.8.4.1 Data Required -- 5.8.4.2 Fractionator Evaluation -- 5.8.4.3 Retraying and Other Modifications -- 5.8.4.4 High‐Capacity Trays -- 5.8.4.5 Test Run Data -- 5.8.4.6 Possible Recommendations -- 5.8.5 Heat Exchangers -- 5.8.5.1 Data Required -- 5.8.5.2 Overall Exchanger Evaluation -- 5.8.5.3 Thermal Rating Methods -- 5.8.5.4 Rating Procedures -- 5.8.5.5 Pressure Drop Estimation -- 5.8.5.6 Use of Operating Data -- 5.8.5.7 Possible Recommendations -- 5.8.5.8 Special Exchanger Services -- 5.8.6 Pumps -- 5.8.6.1 Data Required -- 5.8.6.2 Centrifugal Pump Evaluation -- 5.8.6.3 Proportioning Pumps -- 5.8.6.4 Use of Operating Data -- 5.8.6.5 Possible Recommendations -- 5.8.6.6 Tools -- 5.8.6.7 Special Pump Services -- 5.8.7 Compressors -- 5.8.7.1 Data Required -- 5.8.7.2 Centrifugal Compressor Evaluation -- 5.8.7.3 Reciprocating Compressor Evaluation -- 5.8.7.4 Driver Power -- 5.8.7.5 Materials of Construction -- 5.8.7.6 Use of Operating Data -- 5.8.7.7 Potential Remedies -- 5.8.8 Hydraulics/Piping -- 5.8.8.1 New Unit Line Sizing Criteria Are Generally Not Applicable.
5.8.8.2 Pressure Drop Requires Replacement of Other Equipment -- 5.8.8.3 Approaching Sonic Velocity -- 5.8.8.4 Erosion Concerns -- 5.8.8.5 Pressure Drop Affects Yields -- 5.8.8.6 Pressure Drop Affects Fractionator Operation or Utilities -- 5.9 Economic Evaluation -- 5.9.1 Costs -- 5.9.1.1 Capital Costs -- 5.9.1.2 Operating Costs -- 5.9.1.3 Downtime -- 5.9.1.4 ISBL Vs. OSBL -- 5.9.1.5 Other Costs -- 5.9.2 Benefits -- 5.9.2 Benefits -- 5.9.2.1 Increased Product -- 5.9.2.2 Lower Cost Feed -- 5.9.2.3 Higher Value Product -- 5.9.2.4 Lower Operating Cost -- 5.9.3 Data Requirements -- 5.9.3.1 Feed/Product Pricing -- 5.9.3.2 Utility Pricing -- 5.9.3.3 Catalyst/Adsorbent -- 5.9.3.4 Other Info -- 5.9.4 Types of Economic Analyses -- 5.9.4.1 Basic Comparison of Alternatives -- 5.9.4.2 Simple Payback -- 5.9.4.3 Net Present Value (NPV) -- 5.9.4.4 Internal Rate of Return (IRR) -- 5.9.4.5 Issues -- 5.10 Example Revamp Cases -- 5.10.1 Aromatics Complex Revamp with Adsorbent Reload -- 5.10.2 Aromatics Complex Revamp with Xylene Isomerization Catalyst Change -- 5.10.3 Transalkylation Unit Revamp -- Further Reading -- Part III Process Equipment Assessment -- Chapter 6 Distillation Column Assessment -- 6.1 Introduction -- 6.2 Define a Base Case -- 6.3 Calculations for Missing and Incomplete Data -- 6.4 Building Process Simulation -- 6.5 Heat and Material Balance Assessment -- 6.5.1 Material Balance Assessment -- 6.5.2 Heat Balance Assessment -- 6.6 Tower Efficiency Assessment -- 6.7 Operating Profile Assessment -- 6.8 Tower Rating Assessment -- 6.9 Guidelines for Existing Columns -- Nomenclature -- Greek Letters -- References -- Chapter 7 Heat Exchanger Assessment -- 7.1 Introduction -- 7.2 Basic Calculations -- 7.3 Understand Performance Criterion: U-Values -- 7.3.1 Required U-Value (UR) -- 7.3.2 Clean U-Value (UC) -- 7.3.3 Actual U-Value (UA) -- 7.3.4 Overdesign (ODA).
7.3.5 Controlling Resistance.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Part I Market, Design and Technology Overview -- Chapter 1 Overview of This Book -- 1.1 Why Petrochemical Products Are Important for the Economy -- 1.1.1 Polyethylene -- 1.1.2 Polypropylene -- 1.1.3 Styrene and Polystyrene -- 1.1.4 Polyester -- 1.1.5 Polycarbonate and Phenolic Resins -- 1.1.6 Economic Significance of Polymers -- 1.1.7 Petrochemicals and Petroleum Utilization -- 1.2 Overall Petrochemical Configurations -- 1.3 Context of Process Designs and Operation for Petrochemical Production -- 1.4 Who Is This Book Written For? -- Chapter 2 Market and Technology Overview -- 2.1 Overview of Aromatic Petrochemicals -- 2.2 Introduction and Market Information -- 2.2.1 Benzene -- 2.2.2 Benzene Production Technologies -- 2.2.3 Toluene -- 2.2.4 Toluene Production Technologies -- 2.2.5 Ethylbenzene/Styrene -- 2.2.6 Ethylbenzene/Styrene Production Technologies -- 2.2.7 para-Xylene -- 2.2.8 para-Xylene Production Technologies -- 2.2.9 meta-Xylene -- 2.2.10 meta-Xylene Production Technologies -- 2.2.11 ortho-Xylene -- 2.2.12 ortho-Xylene Production Technologies -- 2.2.13 Cumene/Phenol -- 2.2.14 Cumene/Phenol Production Technologies -- 2.3 Technologies in Aromatics Synthesis -- 2.4 Alternative Feeds for Aromatics -- 2.5 Technologies in Aromatic Transformation -- 2.5.1 Transalkylation -- 2.5.2 Selective Toluene Disproportionation -- 2.5.3 Thermal Hydro-Dealkylation -- 2.5.4 Xylene Isomerization -- 2.6 Technologies in Aromatic Separations -- 2.6.1 Liquid-Liquid Extraction and Extractive Distillation -- 2.6.2 Liquid-Liquid Extraction -- 2.6.3 Extractive Distillation (ED) -- 2.7 Separations by Molecular Weight -- 2.8 Separations by Isomer Type: para-Xylene -- 2.8.1 Crystallization of para-Xylene -- 2.8.2 Adsorptive Separation of para-Xylene.

2.9 Separations by Isomer Type: meta-Xylene -- 2.10 Separations by Isomer Type: ortho-Xylene and Ethylbenzene -- 2.11 Other Related Aromatics Technologies -- 2.11.1 Cyclohexane -- 2.11.2 Ethylbenzene/Styrene -- 2.11.3 Cumene/Phenol/Bisphenol-A -- 2.11.4 Linear Alkyl Benzene Sulfonate for Detergents -- 2.11.5 Oxidation of para- and meta-Xylene -- 2.11.6 Melt-Phase Polymerization of PTA to PET -- 2.11.7 Melt-Phase Polymerization and Solid State Polycondensation of PET Resin -- 2.11.8 Oxidation of ortho-Xylene -- 2.12 Integrated Refining and Petrochemicals -- References -- Chapter 3 Aromatics Process Description -- 3.1 Overall Aromatics Flow Scheme -- 3.2 Adsorptive Separations for para-Xylene -- 3.3 Technologies for Treating Feeds for Aromatics Production -- 3.4 para-Xylene Purification and Recovery by Crystallization -- 3.5 Transalkylation Processes -- 3.6 Xylene Isomerization -- 3.7 Adsorptive Separation of Pure meta-Xylene -- 3.8 para-Selective Catalytic Technologies for para-Xylene -- 3.8.1 para-Selective Toluene Disproportionation -- 3.8.2 para-Selective Toluene Methylation -- References -- Part II Process Design -- Chapter 4 Aromatics Process Unit Design -- 4.1 Introduction -- 4.2 Aromatics Fractionation -- 4.2.1 Reformate Splitter -- 4.2.2 Xylene Fractionation -- 4.2.3 Heavy Aromatics Fractionation -- 4.3 Aromatics Extraction -- 4.3.1 Liquid-Liquid Extraction -- 4.3.1.1 Operating Variables -- 4.3.2 Extractive Distillation -- 4.3.2.1 Operating Variables -- 4.4 Transalkylation -- 4.4.1 Process Flow Description -- 4.4.1.1 Combined Feed Exchanger -- 4.4.1.2 Charge Heater -- 4.4.1.3 Reactor Design -- 4.4.1.4 Catalyst Volume -- 4.4.1.5 Bed Pressure Drop -- 4.4.1.6 Reactor Bed Dimensions -- 4.4.1.7 Products Condenser -- 4.4.1.8 Separator -- 4.4.1.9 Recycle Gas Purity -- 4.4.1.10 Recycle Gas Compressor -- 4.5 Xylene Isomerization.

4.5.1 Combined Feed Exchanger -- 4.5.2 Charge Heater -- 4.5.3 Reactor Design -- 4.5.4 Catalyst Volume -- 4.5.5 Radial Flow Reactor Sizing -- 4.5.6 Products Condenser -- 4.5.7 Separator -- 4.5.8 Recycle Gas Purity -- 4.5.9 Recycle Gas Compressor -- 4.6 para-Xylene Separation -- 4.7 Process Design Considerations: Design Margin Philosophy -- 4.7.1 Equipment Design Margins -- 4.7.1.1 Fired Heaters -- 4.7.1.2 Process-Process Heat Exchangers and Water-Cooled Heat Exchangers -- 4.7.1.3 Air-Cooled Heat Exchangers -- 4.7.1.4 Pumps -- 4.7.1.5 Compressors -- 4.7.1.6 Fractionation Columns -- 4.7.1.7 Reactors -- 4.8 Process Design Considerations: Operational Flexibility -- 4.9 Process Design Considerations: Fractionation Optimization -- 4.10 Safety Considerations -- 4.10.1 Reducing Exposure to Hazardous Materials -- 4.10.2 Process Hazard Analysis (PHA) -- 4.10.3 Hazard and Operability (HAZOP) Study -- Further Reading -- Chapter 5 Aromatics Process Revamp Design -- 5.1 Introduction -- 5.2 Stages of Revamp Assessment and Types of Revamp Studies -- 5.3 Revamp Project Approach -- 5.3.1 Specified Target Capacity -- 5.3.2 Target Production with Constraints -- 5.3.3 Maximize Throughput at Minimum Cost -- 5.3.4 Identify Successive Bottlenecks -- 5.4 Revamp Study Methodology and Strategies -- 5.5 Setting the Design Basis for Revamp Projects -- 5.5.1 Agreement -- 5.5.2 Processing Objectives -- 5.5.3 Define the Approach of the Study -- 5.5.4 Feedstock and Make-Up Gas -- 5.5.5 Product Specifications -- 5.5.6 Getting the Right Equipment Information -- 5.5.7 Operating Data or Test Run Data -- 5.5.8 Constraints -- 5.5.9 Utilities -- 5.5.10 Replacement Equipment Options -- 5.5.11 Guarantees -- 5.5.12 Economic Evaluation Criteria -- 5.6 Process Design for Revamp Projects -- 5.6.1 Adjusting Operating Conditions -- 5.6.2 Design Margin -- 5.7 Revamp Impact on Utilities.

5.8 Equipment Evaluation for Revamps -- 5.8.1 Fired Heater Evaluation -- 5.8.1.1 Data Required -- 5.8.1.2 Fired Heater Evaluation -- 5.8.1.3 Heater Design Limitations -- 5.8.1.4 Radiant Flux Limits -- 5.8.1.5 TWT Limits -- 5.8.1.6 Metallurgy -- 5.8.1.7 Tube Thickness -- 5.8.1.8 Coil Pressure Drop -- 5.8.1.9 Burners -- 5.8.1.10 Stack -- 5.8.2 Vessels: Separators, Receivers, and Drums -- 5.8.2.1 Data Required -- 5.8.2.2 Separator, Receiver, and Drum Evaluation -- 5.8.2.3 Process and Other Modifications -- 5.8.2.4 Test Run Data -- 5.8.2.5 Possible Recommendations -- 5.8.3 Reactors -- 5.8.3.1 Data Required -- 5.8.3.2 Reactor Process Evaluation -- 5.8.3.3 Process and Other Modifications -- 5.8.3.4 Test Run Data -- 5.8.3.5 Possible Recommendations -- 5.8.4 Fractionator Evaluation -- 5.8.4.1 Data Required -- 5.8.4.2 Fractionator Evaluation -- 5.8.4.3 Retraying and Other Modifications -- 5.8.4.4 High‐Capacity Trays -- 5.8.4.5 Test Run Data -- 5.8.4.6 Possible Recommendations -- 5.8.5 Heat Exchangers -- 5.8.5.1 Data Required -- 5.8.5.2 Overall Exchanger Evaluation -- 5.8.5.3 Thermal Rating Methods -- 5.8.5.4 Rating Procedures -- 5.8.5.5 Pressure Drop Estimation -- 5.8.5.6 Use of Operating Data -- 5.8.5.7 Possible Recommendations -- 5.8.5.8 Special Exchanger Services -- 5.8.6 Pumps -- 5.8.6.1 Data Required -- 5.8.6.2 Centrifugal Pump Evaluation -- 5.8.6.3 Proportioning Pumps -- 5.8.6.4 Use of Operating Data -- 5.8.6.5 Possible Recommendations -- 5.8.6.6 Tools -- 5.8.6.7 Special Pump Services -- 5.8.7 Compressors -- 5.8.7.1 Data Required -- 5.8.7.2 Centrifugal Compressor Evaluation -- 5.8.7.3 Reciprocating Compressor Evaluation -- 5.8.7.4 Driver Power -- 5.8.7.5 Materials of Construction -- 5.8.7.6 Use of Operating Data -- 5.8.7.7 Potential Remedies -- 5.8.8 Hydraulics/Piping -- 5.8.8.1 New Unit Line Sizing Criteria Are Generally Not Applicable.

5.8.8.2 Pressure Drop Requires Replacement of Other Equipment -- 5.8.8.3 Approaching Sonic Velocity -- 5.8.8.4 Erosion Concerns -- 5.8.8.5 Pressure Drop Affects Yields -- 5.8.8.6 Pressure Drop Affects Fractionator Operation or Utilities -- 5.9 Economic Evaluation -- 5.9.1 Costs -- 5.9.1.1 Capital Costs -- 5.9.1.2 Operating Costs -- 5.9.1.3 Downtime -- 5.9.1.4 ISBL Vs. OSBL -- 5.9.1.5 Other Costs -- 5.9.2 Benefits -- 5.9.2 Benefits -- 5.9.2.1 Increased Product -- 5.9.2.2 Lower Cost Feed -- 5.9.2.3 Higher Value Product -- 5.9.2.4 Lower Operating Cost -- 5.9.3 Data Requirements -- 5.9.3.1 Feed/Product Pricing -- 5.9.3.2 Utility Pricing -- 5.9.3.3 Catalyst/Adsorbent -- 5.9.3.4 Other Info -- 5.9.4 Types of Economic Analyses -- 5.9.4.1 Basic Comparison of Alternatives -- 5.9.4.2 Simple Payback -- 5.9.4.3 Net Present Value (NPV) -- 5.9.4.4 Internal Rate of Return (IRR) -- 5.9.4.5 Issues -- 5.10 Example Revamp Cases -- 5.10.1 Aromatics Complex Revamp with Adsorbent Reload -- 5.10.2 Aromatics Complex Revamp with Xylene Isomerization Catalyst Change -- 5.10.3 Transalkylation Unit Revamp -- Further Reading -- Part III Process Equipment Assessment -- Chapter 6 Distillation Column Assessment -- 6.1 Introduction -- 6.2 Define a Base Case -- 6.3 Calculations for Missing and Incomplete Data -- 6.4 Building Process Simulation -- 6.5 Heat and Material Balance Assessment -- 6.5.1 Material Balance Assessment -- 6.5.2 Heat Balance Assessment -- 6.6 Tower Efficiency Assessment -- 6.7 Operating Profile Assessment -- 6.8 Tower Rating Assessment -- 6.9 Guidelines for Existing Columns -- Nomenclature -- Greek Letters -- References -- Chapter 7 Heat Exchanger Assessment -- 7.1 Introduction -- 7.2 Basic Calculations -- 7.3 Understand Performance Criterion: U-Values -- 7.3.1 Required U-Value (UR) -- 7.3.2 Clean U-Value (UC) -- 7.3.3 Actual U-Value (UA) -- 7.3.4 Overdesign (ODA).

7.3.5 Controlling Resistance.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.