ORPP logo
Image from Google Jackets

Transfer of Siegel Cusp Forms of Degree 2.

By: Contributor(s): Material type: TextTextSeries: Memoirs of the American Mathematical Society SeriesPublisher: Providence : American Mathematical Society, 2014Copyright date: ©2014Edition: 1st edDescription: 1 online resource (120 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470418939
Subject(s): Genre/Form: Additional physical formats: Print version:: Transfer of Siegel Cusp Forms of Degree 2DDC classification:
  • 512.7
LOC classification:
  • QA243 .P58 2014
Online resources:
Contents:
Cover -- Title page -- Introduction -- Notation -- Chapter 1. Distinguished vectors in local representations -- 1.1. Parabolic induction to (2,2) -- 1.2. Distinguished vectors: non-archimedean case -- 1.3. Distinguished vectors: archimedean case -- 1.4. Intertwining operator: non-archimedean case -- 1.5. Intertwining operator: archimedean case -- Chapter 2. Global -functions for ₄× ₂ -- 2.1. Bessel models for ₄ -- 2.2. Local zeta integrals -- 2.3. The global integral representation -- 2.4. The functional equation -- Chapter 3. The pullback formula -- 3.1. Local sections: non-archimedean case -- 3.2. The local pullback formula: non-archimedean case -- 3.3. Local sections: archimedean case -- 3.4. The local pullback formula: archimedean case -- 3.5. The global pullback formula -- 3.6. The second global integral representation -- Chapter 4. Holomorphy of global -functions for ₄× ₂ -- 4.1. Preliminary considerations -- 4.2. Eisenstein series and Weil representations -- 4.3. The Siegel-Weil formula and the proof of entireness -- Chapter 5. Applications -- 5.1. The transfer theorems -- 5.2. Analytic properties of -functions -- 5.3. Critical values of -functions -- Bibliography -- Back Cover.
Summary: Let \pi be the automorphic representation of \textrm{GSp}_4(\mathbb{A}) generated by a full level cuspidal Siegel eigenform that is not a Saito-Kurokawa lift, and \tau be an arbitrary cuspidal, automorphic representation of \textrm{GL}_2(\mathbb{A}). Using Furusawa's integral representation for \textrm{GSp}_4\times\textrm{GL}_2 combined with a pullback formula involving the unitary group \textrm{GU}(3,3), the authors prove that the L-functions L(s,\pi\times\tau) are "nice". The converse theorem of Cogdell and Piatetski-Shapiro then implies that such representations \pi have a functorial lifting to a cuspidal representation of \textrm{GL}_4(\mathbb{A}). Combined with the exterior-square lifting of Kim, this also leads to a functorial lifting of \pi to a cuspidal representation of \textrm{GL}_5(\mathbb{A}). As an application, the authors obtain analytic properties of various L-functions related to full level Siegel cusp forms. They also obtain special value results for \textrm{GSp}_4\times\textrm{GL}_1 and \textrm{GSp}_4\times\textrm{GL}_2.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title page -- Introduction -- Notation -- Chapter 1. Distinguished vectors in local representations -- 1.1. Parabolic induction to (2,2) -- 1.2. Distinguished vectors: non-archimedean case -- 1.3. Distinguished vectors: archimedean case -- 1.4. Intertwining operator: non-archimedean case -- 1.5. Intertwining operator: archimedean case -- Chapter 2. Global -functions for ₄× ₂ -- 2.1. Bessel models for ₄ -- 2.2. Local zeta integrals -- 2.3. The global integral representation -- 2.4. The functional equation -- Chapter 3. The pullback formula -- 3.1. Local sections: non-archimedean case -- 3.2. The local pullback formula: non-archimedean case -- 3.3. Local sections: archimedean case -- 3.4. The local pullback formula: archimedean case -- 3.5. The global pullback formula -- 3.6. The second global integral representation -- Chapter 4. Holomorphy of global -functions for ₄× ₂ -- 4.1. Preliminary considerations -- 4.2. Eisenstein series and Weil representations -- 4.3. The Siegel-Weil formula and the proof of entireness -- Chapter 5. Applications -- 5.1. The transfer theorems -- 5.2. Analytic properties of -functions -- 5.3. Critical values of -functions -- Bibliography -- Back Cover.

Let \pi be the automorphic representation of \textrm{GSp}_4(\mathbb{A}) generated by a full level cuspidal Siegel eigenform that is not a Saito-Kurokawa lift, and \tau be an arbitrary cuspidal, automorphic representation of \textrm{GL}_2(\mathbb{A}). Using Furusawa's integral representation for \textrm{GSp}_4\times\textrm{GL}_2 combined with a pullback formula involving the unitary group \textrm{GU}(3,3), the authors prove that the L-functions L(s,\pi\times\tau) are "nice". The converse theorem of Cogdell and Piatetski-Shapiro then implies that such representations \pi have a functorial lifting to a cuspidal representation of \textrm{GL}_4(\mathbb{A}). Combined with the exterior-square lifting of Kim, this also leads to a functorial lifting of \pi to a cuspidal representation of \textrm{GL}_5(\mathbb{A}). As an application, the authors obtain analytic properties of various L-functions related to full level Siegel cusp forms. They also obtain special value results for \textrm{GSp}_4\times\textrm{GL}_1 and \textrm{GSp}_4\times\textrm{GL}_2.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.