Laser Printing of Functional Materials : 3D Microfabrication, Electronics and Biomedicine.
Material type:
- text
- computer
- online resource
- 9783527805112
- 621.366
- TA1677 .L374 2018
Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Fundamentals -- Chapter 1 Introduction to Laser‐Induced Transfer and Other Associated Processes -- 1.1 LIFT and Its Derivatives -- 1.2 The Laser Transfer Universe -- 1.3 Book Organization and Chapter Overview -- 1.4 Looking Ahead -- Acknowledgments -- References -- Chapter 2 Origins of Laser‐Induced Transfer Processes -- 2.1 Introduction -- 2.2 Early Work in Laser‐Induced Transfer -- 2.3 Overview of Laser‐Induced Forward Transfer -- 2.3.1 Transferring Metals and Other Materials with Laser‐Induced Forward Transfer (LIFT) -- 2.3.2 Limitations of the Basic LIFT Technique -- 2.3.3 The Role of the Donor Substrate -- 2.3.4 Use of a Dynamic Release Layer (DRL)‐LIFT -- 2.3.5 LIFT with Ultrashort Laser Pulses -- 2.4 Other Laser‐Based Transfer Techniques Inspired by LIFT -- 2.4.1 Matrix‐Assisted Pulsed Laser Evaporation‐Direct Write (MAPLE‐DW) Technique -- 2.4.2 LIFT of Composite Matrix‐Based Materials -- 2.4.3 Hydrogen‐Assisted LIFT -- 2.4.4 Long‐Pulsed LIFT -- 2.4.5 Laser Molecular Implantation -- 2.4.6 Laser‐Induced Thermal Imaging -- 2.5 Other Studies on LIFT -- 2.6 Conclusions -- References -- Chapter 3 LIFT Using a Dynamic Release Layer -- 3.1 Introduction -- 3.2 Absorbing Release Layer - Triazene Polymer -- 3.3 Front‐ and Backside Ablation of the Triazene Polymer -- 3.4 Examples of Materials Transferred by TP‐LIFT -- 3.5 First Demonstration of Devices: OLEDs and Sensors -- 3.5.1 Organic Light Emitting Diode (OLEDs) -- 3.5.2 Sensors -- 3.6 Variation of the DRL Approach: Reactive LIFT -- 3.7 Conclusions and Perspectives -- Acknowledgments -- Conflict of Interest -- References -- Chapter 4 Laser‐Induced Forward Transfer of Fluids -- 4.1 Introduction to the LIFT of Fluids -- 4.1.1 Origin -- 4.1.2 Principle of Operation -- 4.1.3 Developments.
4.2 Mechanisms of Fluid Ejection and Deposition -- 4.2.1 Jet Formation -- 4.2.2 Droplet Deposition -- 4.3 Printing Droplets through LIFT -- 4.3.1 Role of the Laser Parameters -- 4.3.2 Role of the Fluid Properties -- 4.3.3 Setup Parameters -- 4.4 Printing Lines and Patterns with LIFT -- 4.5 Summary -- Acknowledgments -- References -- Chapter 5 Advances in Blister‐Actuated Laser‐Induced Forward Transfer (BA‐LIFT) -- 5.1 Introduction -- 5.2 BA‐LIFT Basics -- 5.3 Why BA‐LIFT? -- 5.4 Blister Formation -- 5.4.1 Dynamics of Blister Formation -- 5.4.2 Finite Element Modeling of Blister Formation -- 5.5 Jet Formation and Expansion -- 5.5.1 Computational Fluid Dynamics Model -- 5.5.2 Effect of the Laser Energy -- 5.5.3 Effect of the Ink Film Properties -- 5.6 Application to the Transfer of Delicate Materials -- 5.7 Conclusions -- References -- Chapter 6 Film‐Free LIFT (FF‐LIFT) -- 6.1 Introduction -- 6.2 Rheological Considerations in Traditional LIFT of Liquids -- 6.2.1 The Challenges behind the Preparation of a Thin Liquid Film -- 6.2.1.1 The Role of Spontaneous Instabilities -- 6.2.1.2 The Role of External Instabilities -- 6.2.2 Technologies for Thin‐Film Preparation -- 6.2.3 Wetting of the Receiver Substrate -- 6.3 Fundamentals of Film‐Free LIFT -- 6.3.1 Cavitation‐Induced Phenomena for Printing -- 6.3.2 Jet Formation in Film‐Free LIFT -- 6.3.3 Differences with LIFT of Liquids -- 6.4 Implementation and Optical Considerations -- 6.4.1 Laser Source -- 6.4.2 Forward (Inverted) versus Backward (Upright) Systems -- 6.4.3 Spherical Aberration and Chromatic Dispersion -- 6.5 Applications -- 6.5.1 Film‐Free LIFT for Printing Biomaterials -- 6.5.2 Film‐Free LIFT for Micro‐Optical Element Fabrication -- 6.6 Conclusions and Future Outlook -- References -- Part II The Role of the Laser-Material Interaction in LIFT -- Chapter 7 Laser‐Induced Forward Transfer of Metals.
7.1 Introduction, Background, and Overview -- 7.2 Modeling, Simulation, and Experimental Studies of the Transfer Process -- 7.2.1 Thermal Processes: Film Heating, Removal, Transfer, and Deposition -- 7.2.2 Parametric Effects -- 7.2.2.1 Laser Fluence and Film Thickness -- 7.2.2.2 Donor‐Film Gap Spacing -- 7.2.2.3 Pulse Width -- 7.2.3 Droplet‐Mode Deposition -- 7.2.4 Characterization of Deposited Structures: Adhesion, Composition, and Electrical Resistivity -- 7.3 Advanced Modeling of LIFT -- 7.4 Research Needs and Future Directions -- 7.5 Conclusions -- References -- Chapter 8 LIFT of Solid Films (Ceramics and Polymers) -- 8.1 Introduction -- 8.2 Assisted Release Processes -- 8.2.1 Optimization of LIFT Transfer of Ceramics via Laser Pulse Interference -- 8.2.1.1 Standing‐Wave Interference from Multiple Layers -- 8.2.1.2 Ballistic Laser‐Assisted Solid Transfer (BLAST) -- 8.2.2 LIFT Printing of Premachined Ceramic Microdisks -- 8.2.3 Spatial Beam Shaping for Patterned LIFT of Polymer Films -- 8.3 Shadowgraphy Studies and Assisted Capture -- 8.3.1 Shadowgraphic Studies of the Transfer of Ceramic Thin Films -- 8.3.2 Application of Polymers as Compliant Receivers -- 8.4 Applications in Energy Harvesting -- 8.4.1 LIFT of Chalcogenide Thin Films -- 8.4.2 Fabrication of a Thermoelectric Generator on a Polymer‐Coated Substrate -- 8.5 Laser‐Induced Backward Transfer (LIBT) of Nanoimprinted Polymer -- 8.5.1 Unstructured Carrier Substrate -- 8.5.2 Structured Carrier Substrate -- 8.6 Conclusions -- Acknowledgments -- References -- Chapter 9 Laser‐Induced Forward Transfer of Soft Materials -- 9.1 Introduction -- 9.2 Background -- 9.3 Jetting Dynamics during Laser Printing of Soft Materials -- 9.3.1 Jet Formation Dynamics during Laser Printing of Newtonian Glycerol Solutions -- 9.3.1.1 Typical Jetting Regimes.
9.3.1.2 Jetting Regime as Function of Fluid Properties and Laser Fluence -- 9.3.1.3 Jettability Phase Diagram -- 9.3.2 Jet Formation Dynamics during Laser Printing of Viscoelastic Alginate Solutions -- 9.3.2.1 Ink Coating Preparation and Design of Experiments -- 9.3.2.2 Typical Jetting Regimes -- 9.3.2.3 General Observation of the Jetting Dynamics -- 9.3.2.4 Effects of Laser Fluence on Jetting Dynamics -- 9.3.2.5 Effects of Alginate Concentration on Jetting Dynamics -- 9.3.2.6 Jettability Phase Diagram -- 9.4 Laser Printing Applications Using Optimized Printing Conditions -- 9.5 Conclusions and Future Work -- Acknowledgments -- References -- Chapter 10 Congruent LIFT with High‐Viscosity Nanopastes -- 10.1 Introduction -- 10.2 Congruent LIFT (or LDT) -- 10.3 Applications -- 10.4 Achieving Congruent Laser Transfers -- 10.5 Issues and Challenges -- 10.6 Summary -- Acknowledgment -- References -- Chapter 11 Laser Printing of Nanoparticles -- 11.1 Introduction, Setup, and Motivation -- 11.2 Laser‐Induced Transfer -- 11.3 Materials for Laser Printing of Nanoparticles -- 11.4 Laser Printing from Bulk‐Silicon and Silicon Films -- 11.5 Magnetic Resonances of Silicon Particles -- 11.6 Laser Printing from Prestructured Films -- 11.7 Applications: Sensing, Metasurfaces, and Additive Manufacturing -- 11.8 Outlook -- References -- Part III Applications -- Chapter 12 Laser Printing of Electronic Materials -- 12.1 Introduction and Context -- 12.2 Organic Thin‐Film Transistor -- 12.2.1 Operation and Characteristics of OTFTs -- 12.2.2 Laser Printing of the Semiconductor Layer -- 12.2.3 Laser Printing of Dielectric Layers -- 12.2.4 Laser Printing of Conducting Layers -- 12.2.5 Single‐Step Printing of Full OTFT Device -- 12.3 Organic Light‐Emitting Diode -- 12.4 Passive Components -- 12.5 Interconnection and Heterogeneous Integration -- 12.6 Conclusion -- References.
Chapter 13 Laser Printing of Chemical and Biological Sensors -- 13.1 Introduction -- 13.2 Conventional Printing Methods for the Fabrication of Chemical and Biological Sensors -- 13.2.1 Contact Printing Methods -- 13.2.1.1 Pin Printing Approach -- 13.2.1.2 Microcontact Printing (or Microstamping) Technique -- 13.2.1.3 Nanotip Printing -- 13.2.2 Noncontact Printing Methods -- 13.2.2.1 Photochemistry‐Based Printing -- 13.2.2.2 Inkjet Printing Technique -- 13.2.2.3 Electrospray Deposition (ESD) -- 13.3 Laser‐Based Printing Techniques: Introduction -- 13.3.1 Laser‐Induced Forward Transfer -- 13.3.2 LIFT of Liquid Films -- 13.4 Applications of Direct Laser Printing -- 13.4.1 Biosensors -- 13.4.1.1 Background -- 13.4.1.2 Printing of Biological Materials for Biosensors -- 13.4.2 Chemical Sensors -- 13.5 Conclusions -- References -- Chapter 14 Laser Printing of Proteins and Biomaterials -- 14.1 Introduction -- 14.2 LIFT of DNA in Solid and Liquid Phase -- 14.3 LIFT of Biomolecules -- 14.3.1 Streptavidin and Avidin-Biotin Complex -- 14.3.2 Amyloid Peptides -- 14.3.3 Odorant‐Binding Proteins -- 14.3.4 Liposomes -- 14.4 Conclusions and Perspectives -- Acknowledgments -- Conflict of Interest -- References -- Chapter 15 Laser‐Assisted Bioprinting of Cells for Tissue Engineering -- 15.1 Laser‐Assisted Bioprinting of Cells -- 15.1.1 The History of Cell Bioprinting and Advantages of Laser‐Assisted Bioprinting for Tissue Engineering -- 15.1.2 Technical Specifications of Laser‐Assisted Bioprinting of Cells -- 15.1.3 Effect of Laser Process and Printing Parameters on Cell Behavior -- 15.2 Laser‐Assisted Bioprinting for Cell Biology Studies -- 15.2.1 Study of Cell-Cell and Cell-Microenvironment Interactions -- 15.2.2 Cancer Research -- 15.3 Laser‐Assisted Bioprinting for Tissue‐Engineering Applications -- 15.3.1 Skin -- 15.3.2 Blood Vessels -- 15.3.3 Heart -- 15.3.4 Bone.
15.3.5 Nervous System.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.