ORPP logo
Image from Google Jackets

Immittance Spectroscopy : Applications to Material Systems.

By: Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2018Copyright date: ©2017Edition: 1st edDescription: 1 online resource (417 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119185406
Subject(s): Genre/Form: Additional physical formats: Print version:: Immittance SpectroscopyDDC classification:
  • 543.50285
LOC classification:
  • QD116.I57 .A55 2017
Online resources:
Contents:
Intro -- Title page -- Copyright page -- Dedication -- Background of this Book -- Acknowledgments -- Chapter 1: Introduction to Immittance Spectroscopy -- 1.1 Basic Definition and Background -- 1.2 Scope and Limitation -- 1.3 Applications of the Immittance Studies to Various Material Systems -- 1.4 Concept of the Linear Circuit Elements: Resistance, Capacitance, and Inductance -- 1.5 Concept of Impedance, Admittance, Complex Capacitance, and Modulus -- 1.6 Immittance Functions -- 1.7 Series Resonant Circuit -- 1.8 Parallel Resonant Circuit -- 1.9 Capacitance and Inductance in Alternating Current -- Problems -- References -- Chapter 2: Basics of Solid State Devices and Materials -- 2.1 Overview of the Fundamentals of Physical Electronics -- 2.2 Basics of Semiconductors -- 2.3 Single-Crystal and Polycrystal Materials -- 2.4 SCSJ and MPCHPH Systems -- 2.5 Representation of the Competing Phenomena -- 2.6 Effect of Normalization of the Electrical Parameters -- Problems -- References -- Chapter 3: Dielectric Representation and Operative Mechanisms -- 3.1 Dielectric Constant of Materials: Single Crystals and Polycrystals -- 3.2 Dielectric Behavior of Materials: Single Crystals and Polycrystals -- 3.3 Origin of Frequency Dependence -- 3.4 Effect of Polarization -- 3.5 Equivalent Circuit Representation of the Mechanisms and Processes -- 3.6 Defects and Traps -- 3.7 Point Defects and Stoichiometric Defects -- 3.8 Leaky Systems -- Problems -- References -- Chapter 4: Ideal Equivalent Circuits and Models -- 4.1 Concept of Equivalent Circuit -- 4.2 Simple and Basic Circuits in Complex Planes: R, C, R-C Series, and R-C Parallel -- 4.3 Debye Circuits: Single Relaxation -- 4.4 Duality of the Equivalent Circuits: Multiple Circuits for a Single Plane -- 4.5 Duality of Equivalent Circuits between Z*- and M*-Planes for Relaxations without Intercept.
4.6 Duality of Equivalent Circuits between Y*- and C*-Planes for Relaxations without Intercept -- 4.7 Duality of Equivalent Circuits for Simultaneous Z*-, Y*-, C*-, and M*-Planes' Relaxations -- 4.8 Proposition of Equivalent Circuit: Polycrystalline Grains and Grain Boundaries -- Problems -- References -- Chapter 5: Debye and Non-Debye Relaxations -- 5.1 Ideal Systems -- 5.2 Non-Ideal Systems -- 5.3 Non-Ideal Systems Implying Distributed Time Constants -- 5.4 D-C Representation, Depression Parameter, and Equivalent Circuit: Conventional Domain -- 5.5 Depression Parameter Based on ωτpeak = 1: Complex Domain -- 5.6 Optimization of ZHF: Complex Domain -- 5.7 Depression Parameter β Based on ωτpeak = 1 -- 5.8 Feature of the Depression Parameter β Based on ωτ ≠ 1 -- 5.9 Analysis of the Havriliak-Negami Representation -- 5.10 Geometrical Interpretation of H-N Relaxation at the Limiting Case -- 5.11 Extraction of the Relaxation Time τ and the H-N Depression Parameters α and β -- 5.12 Checking Generalized Depression Parameter β when α is Real -- 5.13 Checking Generalized Depression Parameter α when β is Real -- 5.14 Effect of α and β on the H-N Distribution Function -- 5.15 Meaning of the Depression Parameters α and β -- 5.16 Relaxation Function with Respect to the Depression Parameters α and β -- Problems -- References -- Chapter 6: Modeling and Interpretation of the Data -- 6.1 Equivalent Circuit Model for the Single Complex Plane (SCP) Representation -- 6.2 Models and Circuits -- 6.3 Nonconventional Circuits -- 6.4 Multiple Equivalent Circuits for Multiple Relaxations in a Single Complex Plane -- 6.5 Single Equivalent Circuit for Multiple Complex Planes -- 6.6 Equivalent Circuit for Resonance -- 6.7 Single Equivalent Circuit from Z*- and M*-Planes -- 6.8 Temperature and Bias Dependence of the Equivalent Circuit Modeling.
6.9 Equivalent Circuit: Zinc Oxide (ZnO) Based Varistors -- 6.10 Equivalent Circuit: Lithium Niobate (LiNbO3) Single Crystal -- 6.11 Equivalent Circuit: Polycrystalline Yttria (Y2O3) -- 6.12 Equivalent Circuit: Polycrystalline Calcium Zirconate (CaZrO3) -- 6.13 Equivalent Circuit: Polycrystalline Calcium Stannate (CaSnO3) -- 6.14 Equivalent Circuit: Polycrystalline Titanium Dioxide (TiO2) -- 6.15 Equivalent Circuit: Multi-Layered Thermoelectric Device (Alternate SiO2/SiO2+Ge Thin-Film) -- 6.16 Equivalent Circuit: Polycrystalline Tungsten Oxide (WO3) -- 6.17 Equivalent Circuit: Biological Material - E. Coli Bacteria -- Problems -- References -- Chapter 7: Data-Handling and Analyzing Criteria -- 7.1 Acquisition of the Immittance Data -- 7.2 Lumped Parameter/Complex Plane Analysis (LP/CPA) -- 7.3 Spectroscopic Analysis (SA) -- 7.4 Bode Plane Analysis (BPA) -- 7.5 Misrepresentation of the Measured Data -- 7.6 Misinterpretation of the Bode Plot: Equivalent Circuit -- Problems -- References -- Chapter 8: Liquid Systems -- 8.1 Non-Crystalline Systems: Liquids -- 8.2 Warburg and Faradaic Impedances -- 8.3 Constant Phase Element (CPE) -- 8.4 Biological Liquid: E. Coli Bacteria -- Problems -- References -- Chapter 9: Case Studies -- 9.1 Analysis of the Measured Data: Aspects of Data-Handling/Analyzing Criteria -- 9.2 Case 1: Proper Physical Geometrical Factors -- 9.3 Case 2: Improper Normalization -- 9.4 Case 3: Effect of Electrode and Lead Wire -- 9.5 Case 4: Identification of Contributions to the Terminal Immittance -- 9.6 Case 5: Use of Proper Unit -- 9.7 Case 6: Demonstration of the Invalid Plot -- 9.8 Case 7: Obscuring Frequency Dependence -- 9.9 Case 8: Misnomer Nomenclature for the Complex Plane Plot -- 9.10 Case 9: Extraction of Equivalent Circuit from the Straight Line or the Non-Relaxation Curve -- Problems -- References.
Chapter 10: Analysis of the Complicated Mott-Schottky Behavior -- 10.1 Capacitance - Voltage (C-V) Measurement -- 10.2 The Mott-Schottky Plot -- 10.3 Arbitrary Measurement Frequency and Construction of the Deceiving Mott-Schottky Plot -- 10.4 Frequency-Independent Representation -- 10.5 Extraction of the Device-Related Parameters -- Problems -- References -- Chapter 11: Analysis of the Measured Data -- 11.1 Introduction and Background of the Immittance Data Analysis -- 11.2 Measurement of the Immittance Data and Complex Plane Analysis -- 11.3 Nonlinear Least Squares Estimation -- 11.4 Complex Nonlinear Least Squares (CNLS) Fitting of the Data -- 11.5 Graphical User Interface Implementation of the Nonlinear Least Square Procedures: Implementation of CNLS using MATLAB -- 11.6 Effect of Fitting Procedure, Measurement Noise, and Solution Algorithm on the Estimated Parameters -- 11.7 Case Studies: CNLS Fitting of the Measured Data in the Complex Planes -- 11.8 Summary -- Problems -- References -- Chapter 12: Appendices -- 12.1 Appendix - A: Sample Input Data for the R-C Parallel Circuit -- 12.2 Appendix - B: R-C Parallel Circuit Data Analysis Output in Z*-Plane -- 12.3 Appendix - C: R-C Parallel Circuit Data Analysis Output in M*-Plane -- 12.4 Appendix - D: Lithium Niobate Crystal Data Analysis Output in C*-Plane -- 12.5 Appendix - E: Multilayer Junction Thermoelectric Device Data Analysis Output in Y*-Plane -- Index -- End User License Agreement.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Title page -- Copyright page -- Dedication -- Background of this Book -- Acknowledgments -- Chapter 1: Introduction to Immittance Spectroscopy -- 1.1 Basic Definition and Background -- 1.2 Scope and Limitation -- 1.3 Applications of the Immittance Studies to Various Material Systems -- 1.4 Concept of the Linear Circuit Elements: Resistance, Capacitance, and Inductance -- 1.5 Concept of Impedance, Admittance, Complex Capacitance, and Modulus -- 1.6 Immittance Functions -- 1.7 Series Resonant Circuit -- 1.8 Parallel Resonant Circuit -- 1.9 Capacitance and Inductance in Alternating Current -- Problems -- References -- Chapter 2: Basics of Solid State Devices and Materials -- 2.1 Overview of the Fundamentals of Physical Electronics -- 2.2 Basics of Semiconductors -- 2.3 Single-Crystal and Polycrystal Materials -- 2.4 SCSJ and MPCHPH Systems -- 2.5 Representation of the Competing Phenomena -- 2.6 Effect of Normalization of the Electrical Parameters -- Problems -- References -- Chapter 3: Dielectric Representation and Operative Mechanisms -- 3.1 Dielectric Constant of Materials: Single Crystals and Polycrystals -- 3.2 Dielectric Behavior of Materials: Single Crystals and Polycrystals -- 3.3 Origin of Frequency Dependence -- 3.4 Effect of Polarization -- 3.5 Equivalent Circuit Representation of the Mechanisms and Processes -- 3.6 Defects and Traps -- 3.7 Point Defects and Stoichiometric Defects -- 3.8 Leaky Systems -- Problems -- References -- Chapter 4: Ideal Equivalent Circuits and Models -- 4.1 Concept of Equivalent Circuit -- 4.2 Simple and Basic Circuits in Complex Planes: R, C, R-C Series, and R-C Parallel -- 4.3 Debye Circuits: Single Relaxation -- 4.4 Duality of the Equivalent Circuits: Multiple Circuits for a Single Plane -- 4.5 Duality of Equivalent Circuits between Z*- and M*-Planes for Relaxations without Intercept.

4.6 Duality of Equivalent Circuits between Y*- and C*-Planes for Relaxations without Intercept -- 4.7 Duality of Equivalent Circuits for Simultaneous Z*-, Y*-, C*-, and M*-Planes' Relaxations -- 4.8 Proposition of Equivalent Circuit: Polycrystalline Grains and Grain Boundaries -- Problems -- References -- Chapter 5: Debye and Non-Debye Relaxations -- 5.1 Ideal Systems -- 5.2 Non-Ideal Systems -- 5.3 Non-Ideal Systems Implying Distributed Time Constants -- 5.4 D-C Representation, Depression Parameter, and Equivalent Circuit: Conventional Domain -- 5.5 Depression Parameter Based on ωτpeak = 1: Complex Domain -- 5.6 Optimization of ZHF: Complex Domain -- 5.7 Depression Parameter β Based on ωτpeak = 1 -- 5.8 Feature of the Depression Parameter β Based on ωτ ≠ 1 -- 5.9 Analysis of the Havriliak-Negami Representation -- 5.10 Geometrical Interpretation of H-N Relaxation at the Limiting Case -- 5.11 Extraction of the Relaxation Time τ and the H-N Depression Parameters α and β -- 5.12 Checking Generalized Depression Parameter β when α is Real -- 5.13 Checking Generalized Depression Parameter α when β is Real -- 5.14 Effect of α and β on the H-N Distribution Function -- 5.15 Meaning of the Depression Parameters α and β -- 5.16 Relaxation Function with Respect to the Depression Parameters α and β -- Problems -- References -- Chapter 6: Modeling and Interpretation of the Data -- 6.1 Equivalent Circuit Model for the Single Complex Plane (SCP) Representation -- 6.2 Models and Circuits -- 6.3 Nonconventional Circuits -- 6.4 Multiple Equivalent Circuits for Multiple Relaxations in a Single Complex Plane -- 6.5 Single Equivalent Circuit for Multiple Complex Planes -- 6.6 Equivalent Circuit for Resonance -- 6.7 Single Equivalent Circuit from Z*- and M*-Planes -- 6.8 Temperature and Bias Dependence of the Equivalent Circuit Modeling.

6.9 Equivalent Circuit: Zinc Oxide (ZnO) Based Varistors -- 6.10 Equivalent Circuit: Lithium Niobate (LiNbO3) Single Crystal -- 6.11 Equivalent Circuit: Polycrystalline Yttria (Y2O3) -- 6.12 Equivalent Circuit: Polycrystalline Calcium Zirconate (CaZrO3) -- 6.13 Equivalent Circuit: Polycrystalline Calcium Stannate (CaSnO3) -- 6.14 Equivalent Circuit: Polycrystalline Titanium Dioxide (TiO2) -- 6.15 Equivalent Circuit: Multi-Layered Thermoelectric Device (Alternate SiO2/SiO2+Ge Thin-Film) -- 6.16 Equivalent Circuit: Polycrystalline Tungsten Oxide (WO3) -- 6.17 Equivalent Circuit: Biological Material - E. Coli Bacteria -- Problems -- References -- Chapter 7: Data-Handling and Analyzing Criteria -- 7.1 Acquisition of the Immittance Data -- 7.2 Lumped Parameter/Complex Plane Analysis (LP/CPA) -- 7.3 Spectroscopic Analysis (SA) -- 7.4 Bode Plane Analysis (BPA) -- 7.5 Misrepresentation of the Measured Data -- 7.6 Misinterpretation of the Bode Plot: Equivalent Circuit -- Problems -- References -- Chapter 8: Liquid Systems -- 8.1 Non-Crystalline Systems: Liquids -- 8.2 Warburg and Faradaic Impedances -- 8.3 Constant Phase Element (CPE) -- 8.4 Biological Liquid: E. Coli Bacteria -- Problems -- References -- Chapter 9: Case Studies -- 9.1 Analysis of the Measured Data: Aspects of Data-Handling/Analyzing Criteria -- 9.2 Case 1: Proper Physical Geometrical Factors -- 9.3 Case 2: Improper Normalization -- 9.4 Case 3: Effect of Electrode and Lead Wire -- 9.5 Case 4: Identification of Contributions to the Terminal Immittance -- 9.6 Case 5: Use of Proper Unit -- 9.7 Case 6: Demonstration of the Invalid Plot -- 9.8 Case 7: Obscuring Frequency Dependence -- 9.9 Case 8: Misnomer Nomenclature for the Complex Plane Plot -- 9.10 Case 9: Extraction of Equivalent Circuit from the Straight Line or the Non-Relaxation Curve -- Problems -- References.

Chapter 10: Analysis of the Complicated Mott-Schottky Behavior -- 10.1 Capacitance - Voltage (C-V) Measurement -- 10.2 The Mott-Schottky Plot -- 10.3 Arbitrary Measurement Frequency and Construction of the Deceiving Mott-Schottky Plot -- 10.4 Frequency-Independent Representation -- 10.5 Extraction of the Device-Related Parameters -- Problems -- References -- Chapter 11: Analysis of the Measured Data -- 11.1 Introduction and Background of the Immittance Data Analysis -- 11.2 Measurement of the Immittance Data and Complex Plane Analysis -- 11.3 Nonlinear Least Squares Estimation -- 11.4 Complex Nonlinear Least Squares (CNLS) Fitting of the Data -- 11.5 Graphical User Interface Implementation of the Nonlinear Least Square Procedures: Implementation of CNLS using MATLAB -- 11.6 Effect of Fitting Procedure, Measurement Noise, and Solution Algorithm on the Estimated Parameters -- 11.7 Case Studies: CNLS Fitting of the Measured Data in the Complex Planes -- 11.8 Summary -- Problems -- References -- Chapter 12: Appendices -- 12.1 Appendix - A: Sample Input Data for the R-C Parallel Circuit -- 12.2 Appendix - B: R-C Parallel Circuit Data Analysis Output in Z*-Plane -- 12.3 Appendix - C: R-C Parallel Circuit Data Analysis Output in M*-Plane -- 12.4 Appendix - D: Lithium Niobate Crystal Data Analysis Output in C*-Plane -- 12.5 Appendix - E: Multilayer Junction Thermoelectric Device Data Analysis Output in Y*-Plane -- Index -- End User License Agreement.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.