Cutting-Edge Technology for Carbon Capture, Utilization, and Storage.
Material type:
- text
- computer
- online resource
- 9781119363767
- SD387.C37 .B355 2018
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Introduction -- Part I: Carbon Capture and Storage -- 1 Carbon Capture Storage Monitoring ("CCSM") -- 1.1 Introduction -- 1.2 State of the Art Practice -- 1.3 Marmot's CCSM Technology -- 1.4 Principles of Information Analysis -- 1.5 Operating Method -- 1.6 Instrumentation and Set up -- Abbreviations -- References -- 2 Key Technologies of Carbon Dioxide Flooding and Storage in China -- 2.1 Background -- 2.2 Key Technologies of Carbon dioxide Flooding and Storage -- 2.2.1 CO2 Miscible Flooding Theory in Continental Sedimentary Reservoirs -- 2.2.2 The Storage Mechanism of CO2 in Reservoirs and Salt Water Layers -- 2.2.3 Reservoir Engineering Technology of CO2 Flooding and Storage -- 2.2.4 High Efficiency Technology of Injection and Production for CO2 Flooding -- 2.2.5 CO2 Long-Distance Pipeline Transportation and Supercritical Injection Technology -- 2.2.6 Fluid Treatment and Circulating Gas Injection Technology of CO2 Flooding -- 2.2.7 Reservoir Monitoring and Dynamic Analysis and Evaluation Technology of CO2 Flooding -- 2.3 Existing Problems and Technical Development Direction -- 2.3.1 The Vital Communal Troubles & -- Challenges -- 2.3.2 Further Orientation of Technology Development -- 3 Mapping CCUS Technological Trajectories and Business Models: The Case of CO2-Dissolved -- 3.1 Introduction -- 3.2 CCS and Roadmaps: From Expectations to Reality ... -- 3.3 CCS Project Portfolio: Between Diversity and Replication -- 3.3.1 Demonstration Process: Between Diversity and Replication -- 3.3.2 Diversity of the Current Project Portfolio -- 3.4 Going Beyond EOR: Other Business Models for Storage? -- 3.4.1 The EOR Legacy -- 3.4.2 From EOR to a CCS Wide-Scale Deployment -- 3.5 Coupling CCS and Geothermal Energy: Lessons from the CO2-DISSOLVED Project Study -- 3.5.1 CO2-DISSOLVED Concept.
3.5.2 Techno-Economic Analysis of CO2-DISSOLVED -- 3.5.3 Business Models and the Replication/Diversity Dilemma -- 3.6 Conclusion -- Acknowledgements -- References -- 4 Feasibility of Ex-Situ Dissolution for Carbon Dioxide Sequestration -- 4.1 Introduction -- 4.2 Methods to Accelerate Dissolution -- 4.2.1 In-situ -- 4.2.2 Ex-situ -- 4.3 Discussion and Conclusions -- Acknowledgments -- References -- Part II: EOR -- 5 CO2 Gas Injection as an EOR Technique - Phase Behavior Considerations -- 5.1 Introduction -- 5.2 Features of CO2 -- 5.3 Miscible CO2 Drive -- 5.4 Immiscible CO2 Drives and Density Effects -- 5.5 Asphaltene Precipitation Caused by Gas Injection -- 5.6 Gas Revaporization as EOR Technique -- 5.7 Conclusions -- List of Symbols -- References -- Appendix A Reservoir Fluid Compositions and Key Property Data -- 6 Study on Storage Mechanisms in CO2 Flooding for Water-Flooded Abandoned Reservoirs -- 6.1 Introduction -- 6.2 CO2 Solubility in Coexistence of Crude Oil and Brine -- 6.3 Mineral Dissolution Effect -- 6.4 Relative Permeability Hysteresis -- 6.5 Effect of CO2 Storage Mechanisms on CO2 Flooding -- 6.6 Conclusions -- References -- 7 The Investigation on the Key Hydrocarbons of Crude Oil Swelling via Supercritical CO2 -- 7.1 Introduction -- 7.2 Hydrocarbon Selection -- 7.3 Experiment Section -- 7.3.1 Principle -- 7.3.2 Apparatus and Samples -- 7.3.3 Experimental Scheme Design -- 7.3.4 Procedures -- 7.4 Results and Discussion -- 7.4.1 Results and Data Processing -- 7.4.2 Volume Swelling Influenced by the Hydrocarbon Property -- 7.4.3 A New Parameter of Molar Density for Evaluating Hydrocarbon Volume Swelling -- 7.4.4 Advantageous Hydrocarbons -- 7.5 Conclusions -- Acknowledgments -- Nomenclature -- References -- 8 Pore-Scale Mechanisms of Enhanced Oil Recovery by CO2 Injection in Low-Permeability Heterogeneous Reservoir -- 8.1 Introduction.
8.2 Experimental Device and Samples -- 8.3 Experimental Procedure -- 8.3.1 Experimental Results -- 8.4 Quantitative Analysis of Oil Recovery in Different Scale Pores -- 8.5 Conclusions -- Acknowledgments -- References -- Part III: Data - Experimental and Correlation -- 9 Experimental Measurement of CO2 Solubility in a 1 mol/kgw CaCl2 Solution at Temperature from 323.15 to 423.15 K and Pressure up to 20 MPa -- 9.1 Introduction -- 9.2 Literature Review -- 9.3 Experimental Section -- 9.3.1 Chemicals -- 9.3.2 Apparatus -- 9.3.3 Operating Procedure -- 9.3.4 Analysis -- 9.4 Results and Discussion -- 9.5 Conclusion -- Acknowledgments -- References -- 10 Determination of Dry-Ice Formation during the Depressurization of a CO2 Re-Injection System -- 10.1 Introduction -- 10.2 Thermodynamics -- 10.3 Case Study -- 10.3.1 System Description -- 10.3.2 Objectives -- 10.3.3 Scenarios -- 10.3.4 Simulation Runs Conclusions -- 10.4 Conclusions -- 11 Phase Equilibrium Properties Aspects of CO2 and Acid Gases Transportation -- 11.1 Introduction -- 11.1.1 State of the Art and Phase Diagrams -- 11.2 Experimental Work and Description of Experimental Setup -- 11.3 Models and Correlation Useful for the Determination of Equilibrium Properties -- 11.4 Presentation of Some Results -- 11.5 Conclusion -- Acknowledgments -- References -- 12 Thermodynamic Aspects for Acid Gas Removal from Natural Gas -- 12.1 Introduction -- 12.2 Thermodynamic Models -- 12.3 Results and Discussion -- 12.3.1 Hydrocarbons and Mercaptans Solubilities in Aqueous Alkanolamine Solution -- 12.3.2 Acid Gases (CO2/H2S) Solubilities in Aqueous Alkanolamine Solution -- 12.3.3 Multi-component Systems Containing CO2-H2SAlkanolamine-Water-Methane-Mercaptan -- 12.4 Conclusion and Perspectives -- Acknowledgements -- References -- 13 Speed of Sound Measurements for a CO2 Rich Mixture -- 13.1 Experimental Section.
13.1.1 Material -- 13.1.2 Experimental Setup -- 13.2 Results and Discussion -- 13.3 Conclusion -- References -- 14 Mutual Solubility of Water and Natural Gas with Different CO2 Content -- 14.1 Introduction -- 14.2 Experimental -- 14.2.1 Materials -- 14.2.2 Experimental Apparatus -- 14.2.3 Experimental Procedures -- 14.3 Thermodynamic Model -- 14.3.1 The Cubic-Plus-Association Equation of State -- 14.3.2 Parameterization of the Model -- 14.4 Results and Discussion -- 14.4.1 Phase Behavior of CO2-Water -- 14.4.2 The Mutual Solubility of Water-Natural Gas -- 14.5 Conclusion -- Acknowledgement -- References -- 15 Effect of SO2 Traces on Metal Mobilization in CCS -- 15.1 Introduction -- 15.2 Experimental -- 15.2.1 Sample Preparation -- 15.2.1.1 Sandstone -- 15.2.1.2 Brine -- 15.2.2 Experimental Set-up -- 15.2.3 Experimental Methodology -- 15.3 Results and Discussion -- 15.3.1 Major Components -- 15.3.2 Trace Metals -- 15.3.2.1 Strontium -- 15.3.2.2 Manganese -- 15.3.2.3 Copper -- 15.3.2.4 Zinc -- 15.3.2.5 Vanadium -- 15.3.2.6 Lead -- 15.3.3 Metal Mobilization -- 15.4 Conclusions -- Acknowledgements -- References -- 16 Experiments and Modeling for CO2 Capture Processes Understanding -- 16.1 Introduction -- 16.2 Chemicals and Materials -- 16.3 Vapor-Liquid Equilibria -- 16.3.1 Experimental VLE of Pure Amine -- 16.3.2 Experimental VLE of {Amine - H2O} System -- 16.3.3 Modeling VLE -- 16.4 Speciation at Equilibrium -- 16.4.1 Equilibrium Measurements 1H and 13C NMR -- 16.4.2 Modeling of Species Concentration -- Acknowledgment -- References -- Part IV: Molecular Simulation -- 17 Kinetic Monte Carlo Molecular Simulation of Chemical Reaction Equilibria -- References -- 18 Molecular Simulation Study on the Diffusion Mechanism of Fluid in Nanopores of Illite in Shale Gas Reservoir -- 18.1 Introduction -- 18.2 Models and Simulation Details.
18.2.1 Models and Simulation Parameters -- 18.2.2 Data Processing and Computing Methods -- 18.3 Results and Discussion -- 18.3.1 Variation Law of Self Diffusion Coefficient -- 18.3.2 Density Distribution -- 18.3.3 Radial Distribution Function -- 18.4 Conclusions -- Acknowledgements -- References -- 19 Molecular Simulation of Reactive Absorption of CO2 in Aqueous Alkanolamine Solutions -- References -- Part V: Processes -- 20 CO2 Capture from Natural Gas in LNG Production. Comparison of Low-Temperature Purification Processes and Conventional Amine Scrubbing -- 20.1 Introduction -- 20.2 Description of Process Solutions -- 20.2.1 The Ryan-Holmes Process -- 20.2.2 The Dual Pressure Low-Temperature Distillation Process -- 20.2.3 The Chemical Absorption Process -- 20.3 Methods -- 20.4 Results and Discussion -- 20.5 Conclusions -- Nomenclature -- Abbreviations -- Symbols -- Subscripts -- Superscripts -- Greek Symbols -- References -- 21 CO2 Capture Using Deep Eutectic Solvent and Amine (MEA) Solution -- 21.1 Experimental Section -- 21.2 Results and Discussion -- 21.2.1 Validation of the Experimental Method -- 21.2.2 Solubility of CO2 in the Solvent DES/MEA -- 21.2.3 Solubility of CO2 - Comparison Between DES + MEA and DES Solvent -- 21.2.4 Solubility of CO2 - Comparison Between (DES + MEA) and (H2O + MEA) Solvent -- 21.5 Conclusion -- References -- 22 The Impact of Thermodynamic Model Accuracy on Sizing and Operating CCS Purification and Compression Units -- 22.1 Introduction -- 22.2 Thermodynamic Systems in CCUS Technologies -- 22.2.1 Compositional Characteristics of CO2 Captured Flows -- 22.2.2 Post-Combustion -- 22.2.3 Oxy-Fuel Combustion -- 22.2.4 Pre-Combustion -- 22.3 Operating Conditions of Purification and Compression Units -- 22.4 Quality Specifications of CO2 Capture Flows -- 22.5 Cubic Equations of State for CCUS Fluids.
22.6 Influence of EoS Accuracy on Purification and Compression Processes.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.