ORPP logo
Image from Google Jackets

Bioelectrochemical Interface Engineering.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2019Copyright date: ©2020Edition: 1st edDescription: 1 online resource (559 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119538561
Subject(s): Genre/Form: Additional physical formats: Print version:: Bioelectrochemical Interface EngineeringDDC classification:
  • 572.437
LOC classification:
  • QP517.B53 .B564 2020
Online resources:
Contents:
Intro -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Electrochemical Performance Analyses of Biofilms -- 1.1 Introduction -- 1.2 Electrochemical Principles -- 1.2.1 Electrochemical Cells -- 1.2.2 Nernst Equation and Equilibrium Constant -- 1.2.3 For an Electrochemical Cell -- 1.2.4 Faradic and Nonfaradic Currents -- 1.2.4.1 Faradic Current -- 1.2.4.2 Nonfaradaic Current -- 1.3 Cyclic Voltammetry -- 1.3.1 Working Principle and Instrumentation -- 1.3.2 Cyclic Voltammetry and Data Interpretation -- 1.3.2.1 R eversible Process -- 1.3.2.2 Irreversible Process -- 1.3.2.3 Quasi-Reversible Electron Transfer Process -- 1.3.2.4 Special Case -- 1.3.3 Applications of CV -- 1.3.3.1 Case Study 1 -- 1.3.3.2 Case Study 2 -- 1.3.3.3 Case Study 3 -- 1.3.4 Related Methods -- 1.3.4.1 Amperometry -- 1.3.4.2 Differential Pulse Voltammetry -- 1.4 Electrochemical Impedance Spectroscopy -- 1.4.1 Introduction and Basic Concepts -- 1.4.1.1 Direct Current and Alternating Current -- 1.4.1.2 Resistance and Impedance -- 1.4.1.3 AC Impedance Theory -- 1.4.1.4 Electrical Circuit Elements -- 1.4.1.5 Graphical Representation of AC Impedance Spectroscopy Data -- 1.4.2 Equivalent Circuit Elements and Electrochemistry -- 1.4.2.1 Electrolyte Resistance -- 1.4.2.2 Double-layer Capacitance and Pseudocapacitance -- 1.4.2.3 Charge Transfer Resistance -- 1.4.2.4 Diffusion -- 1.4.2.5 Constant Phase Element (CPE) -- 1.4.3 Equivalent Electrical Circuits Commonly Used for Biological Systems -- 1.4.3.1 Equivalent Circuit Model 1 -- 1.4.3.2 Equivalent Circuit Model 2 -- 1.4.3.3 Equivalent Circuit Model 3 -- 1.4.3.4 Equivalent Circuit Model 4 -- 1.4.3.5 Equivalent Circuit Model 5 -- 1.4.3.6 Equivalent Circuit Model 6 -- 1.4.3.7 Equivalent Circuit Model 7 -- 1.5 Electrochemical Noise (ECN) Technique -- 1.5.1 Introduction -- 1.5.2 Mathematical Background.
1.5.2.1 Shot Noise Parameters -- 1.5.3 Application of ECN to Detect Microbial Corrosion -- 1.5.3.1 Case Study -- 1.6 Conclusion -- Acknowledgments -- References -- Take-home Message -- Test Yourself -- Chapter 2 Direct Electron Transfer in Redox Enzymes and Microorganisms -- 2.1 Introduction -- 2.2 Wiring Enzymes to the Electrode Surface -- 2.2.1 Glucose Oxidase -- 2.2.2 Multicopper Oxidases -- 2.2.3 Iron-containing Enzymes -- 2.2.4 Cytochrome P450 in Human Liver Microsomes -- 2.2.5 Iron/Copper-containing Enzymes -- 2.2.6 Cellobiose Dehydrogenase -- 2.2.7 Molybdenum Enzymes -- 2.2.8 Xanthine Dehydrogenase -- 2.2.9 Dimethylsulfoxide Reductase -- 2.2.10 Mo-Fe Protein -- 2.2.11 Fructose Dehydrogenase (FDH) -- 2.2.12 Tungsten-containing Formate Dehydrogenase -- 2.3 Wiring Microorganisms to the Electrode Surface -- 2.3.1 Electroactive Bacterium and Electrodes -- 2.3.2 Electricity-producing Bacteria -- 2.3.3 Electron Transfer in Microbial Fuel Cells -- 2.3.4 Mediated Electron Transfer -- 2.3.5 Direct Electron Transfer -- References -- Take-home Message -- Test Yourself -- Chapter 3 Electrochemical Techniques and Applications to Characterize Single- and Multicellular Electric Microbial Functions -- 3.1 Introduction to Microbial Electrochemical Functions and Processes -- 3.1.1 Microbes Capable of Exchanging Electrons with Extracellular Solid Surfaces -- 3.1.2 Targets for Whole‐cell Techniques -- 3.2 Electrochemical Techniques Related to Single‐cell Processes -- 3.2.1 Interfacial and Metabolic Current (Amperometry and Voltammetry Techniques) -- 3.2.1.1 Single-potential Amperometry -- 3.2.1.2 Cyclic Voltammetry -- 3.2.1.3 Differential Pulse Voltammetry -- 3.2.1.4 Linear Sweep Voltammetry -- 3.2.2 Microscopy-combined Electrochemical Techniques -- 3.2.2.1 Electron Transport Processes -- 3.2.2.2 Metabolic Processes -- 3.2.3 Spectroelectrochemistry.
3.3 Electrochemical Techniques Related to Biofilm Processes -- 3.3.1 Use of IDA in a Bipotentiostat System -- 3.3.2 Electron-hopping Mechanism Across the Electroactive Sites -- 3.3.3 Metallic-like Conductivity Mechanism -- 3.4 Techniques to Analyze Nanowires -- 3.4.1 Atomic Force Microscope (AFM) -- 3.4.1.1 Working Principal of AFM -- 3.4.1.2 AFM Studies for Nanowires -- 3.4.2 Scanning Tunneling Microscopy (STM) -- 3.4.2.1 Working Principle of STM -- 3.4.2.2 STM for the Nanowire -- References -- Take-home Message -- Test Yourself -- Chapter 4 Electrochemical Analysis of Single Cells -- 4.1 Introduction -- 4.2 Single-cell Analysis Applications and Current Technologies -- 4.2.1 Genomics -- 4.2.1.1 Techniques -- 4.2.1.2 Applications -- 4.2.2 Transcriptomics -- 4.2.2.1 Techniques -- 4.2.2.2 Applications -- 4.2.3 Proteomics -- 4.2.3.1 Techniques -- 4.2.3.2 Applications -- 4.2.4 Metabolomics -- 4.2.4.1 Techniques -- 4.2.4.2 Applications -- 4.3 Electrochemical Methods for Single‐cell Analysis -- 4.3.1 Micro and Nanofabrication for Intracellular Analysis Within Biological Systems -- 4.3.1.1 Strategies for Fabricating Nanoelectrodes -- 4.3.1.2 Adapting Nanoelectrodes -- 4.3.1.3 Microfluidics -- 4.3.2 Electrochemical Microscopy with Advanced Resolution Imaging -- 4.3.2.1 Scanning Electrochemical Microscopy (SECM) -- 4.3.2.2 Scanning Ion Conductive Microscopy (SICM) -- 4.3.2.3 Nanopipettes in SECM and SICM -- 4.3.2.4 Electrochemical Measurement of Intracellular Components Within -- 4.4 Microelectrodes for Single‐cell Analysis -- 4.4.1 Fabrication Methods for 2D and 3D Microelectrodes -- 4.4.2 Cellular Applications -- 4.4.2.1 Neuron Transmitters and Signaling -- 4.4.2.2 Cell Expression Monitoring -- 4.4.2.3 Patch Clamps -- 4.4.2.4 Possible Issues for Capturing Single Cells on Electrode Surfaces -- 4.4.2.5 Measurement Variability.
4.5 Electroluminescence-based Single-cell Measurements -- 4.6 Lab-on-chip-based Single-cell Analysis -- 4.6.1 Surface Plasmon Resonance (SPR) -- 4.7 Conclusion -- References -- Take-home Message -- Test Yourself -- Chapter 5 Biocorrosion -- 5.1 Introduction -- 5.1.1 Uniform Corrosion -- 5.1.2 Galvanic Corrosion -- 5.1.3 Crevice Corrosion -- 5.1.4 Pitting Corrosion -- 5.1.5 Intergranular Corrosion -- 5.1.6 Erosion Corrosion -- 5.1.7 Stress Corrosion Cracking -- 5.1.8 Biocorrosion -- 5.2 Microorganisms Involved in Corrosion -- 5.2.1 Sulfate-reducing Bacteria (SRB) -- 5.2.2 Sulfate-oxidizing Bacteria (SOB) -- 5.2.3 Iron-oxidizing Bacteria (IOB) -- 5.2.4 Acid-producing Bacteria (APB) -- 5.2.5 Slime-forming Bacteria -- 5.3 Mechanisms -- 5.3.1 Differential Concentration Cells -- 5.3.2 Cathodic Depolarization -- 5.3.3 Galvanic Cells -- 5.3.4 Corrosive Metabolic Products -- 5.3.5 Extracellular Electron Transfer -- 5.4 Biocorrosion Control Strategies -- 5.4.1 Pigging -- 5.4.2 Biocides -- 5.4.2.1 Oxidizing Biocides -- 5.4.2.2 Non-oxidizing Biocides -- 5.5 Materials Vulnerable to Biocorrosion -- 5.6 Biocorrosion of Biomedical Implants -- 5.7 Biocorrosion Detection Techniques -- 5.7.1 Weight Loss Method -- 5.7.2 Potentiodynamic Polarization -- 5.7.3 Electrochemical Impedance Spectroscopy (EIS) -- 5.8 Conclusion -- Acknowledgments -- References -- Further Reading -- Take-home Message -- Test Yourself -- Chapter 6 Microbial Fuel Cells : A Sustainable Technology for Pollutant Removal and Power Generation -- 6.1 Introduction -- 6.2 Microbial Fuel Cells -- 6.2.1 A Brief History -- 6.2.2 Operating Principles -- 6.2.3 Electrogens in MFCs -- 6.2.3.1 Direct Electron Transfer -- 6.2.3.2 Mediated Electron Transfer -- 6.2.4 Applications -- 6.3 Measuring Performance -- 6.3.1 Voltage Generation -- 6.3.2 Pollutant Treatment -- 6.3.3 Internal Resistance -- 6.3.3.1 Polarization.
6.3.3.2 Current Interrupt Technique -- 6.3.3.3 E lectrochemical Methods -- 6.3.4 Electrochemical Analysis -- 6.4 MFC Configuration -- 6.5 Materials -- 6.5.1 Anode -- 6.5.2 Cathode -- 6.5.3 Catholyte -- 6.5.4 Separator -- 6.5.5 Current Collectors -- 6.5.6 Load -- 6.6 Limitations in MFCs -- 6.6.1 Limited Power Generation -- 6.6.2 Methanogenesis -- 6.6.3 Substrate and Oxygen Diffusion -- 6.6.4 Sedimentation of Microorganisms -- 6.7 Other MFC-based Technologies -- 6.7.1 Sediment MFCs -- 6.7.2 Body Fluid Batteries -- 6.7.3 Toxicity Sensors -- 6.7.4 Identification and Quantification of Microorganisms -- 6.7.5 Analyte Sensors -- 6.7.6 MFC as a BOD Sensor -- 6.8 Pilot-scale MFCs -- References -- Take-home Message -- Test Yourself -- Chapter 7 Biophotovoltaics: Molecular Mechanisms and Applications -- 7.1 Introduction -- 7.2 Photocurrent Generation with Biological Catalysts -- 7.3 Photosynthetic Microbes as Photobioelectrocatalysts in BESs -- 7.4 Biocatalysts of Photosynthetic Organisms -- 7.4.1 Photosynthetic Reaction Centers (PRCs) -- 7.4.2 Photosystem II -- 7.4.3 Photosystem I -- 7.5 Electron Transfer in Microalgae During Photosynthesis (Light Reaction) -- 7.5.1 Light Reaction and Photophosphorylation in Microalgae -- 7.5.2 Components of Light Reaction -- 7.5.3 Photon-Electron Conversion in Microalgae -- 7.5.4 The Dark Reaction in Microalgae -- 7.5.4.1 Carbon Assimilation -- 7.5.4.2 Photorespiration -- 7.5.4.3 Reactions of the Calvin-Benson Cycle -- 7.6 Electron Transfer Mechanisms in Purple Photosynthetic Bacteria -- 7.6.1 Electron Transport Mechanisms along e‐Pili -- 7.6.2 e-Pili as Maintainable Electronic Materials -- 7.7 Electron Transfer Mechanisms of Cyanobacteria -- 7.8 Models of Solar Energy Conversion Devices -- 7.8.1 Microbial Solar Cells (MSCs) -- 7.8.2 Photosynthetic Bacteria in Solar Cells -- 7.8.3 Fuel Cell-Solar Cell Hybrids.
7.9 Applications and Future Perspectives.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Intro -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Electrochemical Performance Analyses of Biofilms -- 1.1 Introduction -- 1.2 Electrochemical Principles -- 1.2.1 Electrochemical Cells -- 1.2.2 Nernst Equation and Equilibrium Constant -- 1.2.3 For an Electrochemical Cell -- 1.2.4 Faradic and Nonfaradic Currents -- 1.2.4.1 Faradic Current -- 1.2.4.2 Nonfaradaic Current -- 1.3 Cyclic Voltammetry -- 1.3.1 Working Principle and Instrumentation -- 1.3.2 Cyclic Voltammetry and Data Interpretation -- 1.3.2.1 R eversible Process -- 1.3.2.2 Irreversible Process -- 1.3.2.3 Quasi-Reversible Electron Transfer Process -- 1.3.2.4 Special Case -- 1.3.3 Applications of CV -- 1.3.3.1 Case Study 1 -- 1.3.3.2 Case Study 2 -- 1.3.3.3 Case Study 3 -- 1.3.4 Related Methods -- 1.3.4.1 Amperometry -- 1.3.4.2 Differential Pulse Voltammetry -- 1.4 Electrochemical Impedance Spectroscopy -- 1.4.1 Introduction and Basic Concepts -- 1.4.1.1 Direct Current and Alternating Current -- 1.4.1.2 Resistance and Impedance -- 1.4.1.3 AC Impedance Theory -- 1.4.1.4 Electrical Circuit Elements -- 1.4.1.5 Graphical Representation of AC Impedance Spectroscopy Data -- 1.4.2 Equivalent Circuit Elements and Electrochemistry -- 1.4.2.1 Electrolyte Resistance -- 1.4.2.2 Double-layer Capacitance and Pseudocapacitance -- 1.4.2.3 Charge Transfer Resistance -- 1.4.2.4 Diffusion -- 1.4.2.5 Constant Phase Element (CPE) -- 1.4.3 Equivalent Electrical Circuits Commonly Used for Biological Systems -- 1.4.3.1 Equivalent Circuit Model 1 -- 1.4.3.2 Equivalent Circuit Model 2 -- 1.4.3.3 Equivalent Circuit Model 3 -- 1.4.3.4 Equivalent Circuit Model 4 -- 1.4.3.5 Equivalent Circuit Model 5 -- 1.4.3.6 Equivalent Circuit Model 6 -- 1.4.3.7 Equivalent Circuit Model 7 -- 1.5 Electrochemical Noise (ECN) Technique -- 1.5.1 Introduction -- 1.5.2 Mathematical Background.

1.5.2.1 Shot Noise Parameters -- 1.5.3 Application of ECN to Detect Microbial Corrosion -- 1.5.3.1 Case Study -- 1.6 Conclusion -- Acknowledgments -- References -- Take-home Message -- Test Yourself -- Chapter 2 Direct Electron Transfer in Redox Enzymes and Microorganisms -- 2.1 Introduction -- 2.2 Wiring Enzymes to the Electrode Surface -- 2.2.1 Glucose Oxidase -- 2.2.2 Multicopper Oxidases -- 2.2.3 Iron-containing Enzymes -- 2.2.4 Cytochrome P450 in Human Liver Microsomes -- 2.2.5 Iron/Copper-containing Enzymes -- 2.2.6 Cellobiose Dehydrogenase -- 2.2.7 Molybdenum Enzymes -- 2.2.8 Xanthine Dehydrogenase -- 2.2.9 Dimethylsulfoxide Reductase -- 2.2.10 Mo-Fe Protein -- 2.2.11 Fructose Dehydrogenase (FDH) -- 2.2.12 Tungsten-containing Formate Dehydrogenase -- 2.3 Wiring Microorganisms to the Electrode Surface -- 2.3.1 Electroactive Bacterium and Electrodes -- 2.3.2 Electricity-producing Bacteria -- 2.3.3 Electron Transfer in Microbial Fuel Cells -- 2.3.4 Mediated Electron Transfer -- 2.3.5 Direct Electron Transfer -- References -- Take-home Message -- Test Yourself -- Chapter 3 Electrochemical Techniques and Applications to Characterize Single- and Multicellular Electric Microbial Functions -- 3.1 Introduction to Microbial Electrochemical Functions and Processes -- 3.1.1 Microbes Capable of Exchanging Electrons with Extracellular Solid Surfaces -- 3.1.2 Targets for Whole‐cell Techniques -- 3.2 Electrochemical Techniques Related to Single‐cell Processes -- 3.2.1 Interfacial and Metabolic Current (Amperometry and Voltammetry Techniques) -- 3.2.1.1 Single-potential Amperometry -- 3.2.1.2 Cyclic Voltammetry -- 3.2.1.3 Differential Pulse Voltammetry -- 3.2.1.4 Linear Sweep Voltammetry -- 3.2.2 Microscopy-combined Electrochemical Techniques -- 3.2.2.1 Electron Transport Processes -- 3.2.2.2 Metabolic Processes -- 3.2.3 Spectroelectrochemistry.

3.3 Electrochemical Techniques Related to Biofilm Processes -- 3.3.1 Use of IDA in a Bipotentiostat System -- 3.3.2 Electron-hopping Mechanism Across the Electroactive Sites -- 3.3.3 Metallic-like Conductivity Mechanism -- 3.4 Techniques to Analyze Nanowires -- 3.4.1 Atomic Force Microscope (AFM) -- 3.4.1.1 Working Principal of AFM -- 3.4.1.2 AFM Studies for Nanowires -- 3.4.2 Scanning Tunneling Microscopy (STM) -- 3.4.2.1 Working Principle of STM -- 3.4.2.2 STM for the Nanowire -- References -- Take-home Message -- Test Yourself -- Chapter 4 Electrochemical Analysis of Single Cells -- 4.1 Introduction -- 4.2 Single-cell Analysis Applications and Current Technologies -- 4.2.1 Genomics -- 4.2.1.1 Techniques -- 4.2.1.2 Applications -- 4.2.2 Transcriptomics -- 4.2.2.1 Techniques -- 4.2.2.2 Applications -- 4.2.3 Proteomics -- 4.2.3.1 Techniques -- 4.2.3.2 Applications -- 4.2.4 Metabolomics -- 4.2.4.1 Techniques -- 4.2.4.2 Applications -- 4.3 Electrochemical Methods for Single‐cell Analysis -- 4.3.1 Micro and Nanofabrication for Intracellular Analysis Within Biological Systems -- 4.3.1.1 Strategies for Fabricating Nanoelectrodes -- 4.3.1.2 Adapting Nanoelectrodes -- 4.3.1.3 Microfluidics -- 4.3.2 Electrochemical Microscopy with Advanced Resolution Imaging -- 4.3.2.1 Scanning Electrochemical Microscopy (SECM) -- 4.3.2.2 Scanning Ion Conductive Microscopy (SICM) -- 4.3.2.3 Nanopipettes in SECM and SICM -- 4.3.2.4 Electrochemical Measurement of Intracellular Components Within -- 4.4 Microelectrodes for Single‐cell Analysis -- 4.4.1 Fabrication Methods for 2D and 3D Microelectrodes -- 4.4.2 Cellular Applications -- 4.4.2.1 Neuron Transmitters and Signaling -- 4.4.2.2 Cell Expression Monitoring -- 4.4.2.3 Patch Clamps -- 4.4.2.4 Possible Issues for Capturing Single Cells on Electrode Surfaces -- 4.4.2.5 Measurement Variability.

4.5 Electroluminescence-based Single-cell Measurements -- 4.6 Lab-on-chip-based Single-cell Analysis -- 4.6.1 Surface Plasmon Resonance (SPR) -- 4.7 Conclusion -- References -- Take-home Message -- Test Yourself -- Chapter 5 Biocorrosion -- 5.1 Introduction -- 5.1.1 Uniform Corrosion -- 5.1.2 Galvanic Corrosion -- 5.1.3 Crevice Corrosion -- 5.1.4 Pitting Corrosion -- 5.1.5 Intergranular Corrosion -- 5.1.6 Erosion Corrosion -- 5.1.7 Stress Corrosion Cracking -- 5.1.8 Biocorrosion -- 5.2 Microorganisms Involved in Corrosion -- 5.2.1 Sulfate-reducing Bacteria (SRB) -- 5.2.2 Sulfate-oxidizing Bacteria (SOB) -- 5.2.3 Iron-oxidizing Bacteria (IOB) -- 5.2.4 Acid-producing Bacteria (APB) -- 5.2.5 Slime-forming Bacteria -- 5.3 Mechanisms -- 5.3.1 Differential Concentration Cells -- 5.3.2 Cathodic Depolarization -- 5.3.3 Galvanic Cells -- 5.3.4 Corrosive Metabolic Products -- 5.3.5 Extracellular Electron Transfer -- 5.4 Biocorrosion Control Strategies -- 5.4.1 Pigging -- 5.4.2 Biocides -- 5.4.2.1 Oxidizing Biocides -- 5.4.2.2 Non-oxidizing Biocides -- 5.5 Materials Vulnerable to Biocorrosion -- 5.6 Biocorrosion of Biomedical Implants -- 5.7 Biocorrosion Detection Techniques -- 5.7.1 Weight Loss Method -- 5.7.2 Potentiodynamic Polarization -- 5.7.3 Electrochemical Impedance Spectroscopy (EIS) -- 5.8 Conclusion -- Acknowledgments -- References -- Further Reading -- Take-home Message -- Test Yourself -- Chapter 6 Microbial Fuel Cells : A Sustainable Technology for Pollutant Removal and Power Generation -- 6.1 Introduction -- 6.2 Microbial Fuel Cells -- 6.2.1 A Brief History -- 6.2.2 Operating Principles -- 6.2.3 Electrogens in MFCs -- 6.2.3.1 Direct Electron Transfer -- 6.2.3.2 Mediated Electron Transfer -- 6.2.4 Applications -- 6.3 Measuring Performance -- 6.3.1 Voltage Generation -- 6.3.2 Pollutant Treatment -- 6.3.3 Internal Resistance -- 6.3.3.1 Polarization.

6.3.3.2 Current Interrupt Technique -- 6.3.3.3 E lectrochemical Methods -- 6.3.4 Electrochemical Analysis -- 6.4 MFC Configuration -- 6.5 Materials -- 6.5.1 Anode -- 6.5.2 Cathode -- 6.5.3 Catholyte -- 6.5.4 Separator -- 6.5.5 Current Collectors -- 6.5.6 Load -- 6.6 Limitations in MFCs -- 6.6.1 Limited Power Generation -- 6.6.2 Methanogenesis -- 6.6.3 Substrate and Oxygen Diffusion -- 6.6.4 Sedimentation of Microorganisms -- 6.7 Other MFC-based Technologies -- 6.7.1 Sediment MFCs -- 6.7.2 Body Fluid Batteries -- 6.7.3 Toxicity Sensors -- 6.7.4 Identification and Quantification of Microorganisms -- 6.7.5 Analyte Sensors -- 6.7.6 MFC as a BOD Sensor -- 6.8 Pilot-scale MFCs -- References -- Take-home Message -- Test Yourself -- Chapter 7 Biophotovoltaics: Molecular Mechanisms and Applications -- 7.1 Introduction -- 7.2 Photocurrent Generation with Biological Catalysts -- 7.3 Photosynthetic Microbes as Photobioelectrocatalysts in BESs -- 7.4 Biocatalysts of Photosynthetic Organisms -- 7.4.1 Photosynthetic Reaction Centers (PRCs) -- 7.4.2 Photosystem II -- 7.4.3 Photosystem I -- 7.5 Electron Transfer in Microalgae During Photosynthesis (Light Reaction) -- 7.5.1 Light Reaction and Photophosphorylation in Microalgae -- 7.5.2 Components of Light Reaction -- 7.5.3 Photon-Electron Conversion in Microalgae -- 7.5.4 The Dark Reaction in Microalgae -- 7.5.4.1 Carbon Assimilation -- 7.5.4.2 Photorespiration -- 7.5.4.3 Reactions of the Calvin-Benson Cycle -- 7.6 Electron Transfer Mechanisms in Purple Photosynthetic Bacteria -- 7.6.1 Electron Transport Mechanisms along e‐Pili -- 7.6.2 e-Pili as Maintainable Electronic Materials -- 7.7 Electron Transfer Mechanisms of Cyanobacteria -- 7.8 Models of Solar Energy Conversion Devices -- 7.8.1 Microbial Solar Cells (MSCs) -- 7.8.2 Photosynthetic Bacteria in Solar Cells -- 7.8.3 Fuel Cell-Solar Cell Hybrids.

7.9 Applications and Future Perspectives.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.