From Glass to Crystal : Nucleation, Growth and Phase Separation: from Research to Applications.
Material type:
- text
- computer
- online resource
- 9782759819973
- QD921.F766 2017
Intro -- Contents -- Preface -- Foreword -- Introduction -- Contributors -- Main symbols and physical constants -- Abbreviations -- Main crystalline phases considered in this book -- Chapter 1. The classical nucleation theory -- 1.1. From devitrification… -- 1.2. … to the origins of CNT -- 1.3. Homogeneous nucleation -- 1.3.1. Thermodynamic considerations -- 1.3.2. Kinetic considerations -- 1.3.3. Nucleation rate -- 1.3.4. Examples of glasses with homogeneous nucleation -- 1.4. Heterogeneous nucleation -- 1.5. Induction time -- 1.6. Crystal growth -- 1.6.1. Crystal growth rate -- 1.6.2. Crystalline morphology -- 1.6.3. Constraints on crystals -- 1.6.4. Ostwald ripening -- 1.6.5. TTT diagram -- 1.7. CNT facing experiments -- 1.8. Ostwald's rule -- 1.9. Conclusion -- Chapter 2. Beyond the classical nucleation theory -- 2.1. Cluster dynamics -- 2.2. Density functional theory (DFT) -- 2.3. Validity of the Stokes-Einstein equation? -- 2.4. Models of non-classical nucleus -- 2.4.1. Introduction of a fractal surface -- 2.4.2. Diffuse interface theory (DIT) -- 2.4.3. Experimental observations of the critical nucleus? -- 2.5. Non-homogeneous disordered system -- 2.5.1. Nucleation theory in systems with static local disorder -- 2.5.2. Recent experimental observations -- 2.6. Generalized Gibbs's approach -- 2.6.1. Simplified theoretical description -- 2.6.2. Implications for nucleation/growth -- 2.6.3. Experimental observations of metastable nucleation -- 2.7. Two-step model -- 2.7.1. Description of the two-step model -- 2.7.2. Experimental observations -- 2.8. Conclusion -- Chapter 3. Thermodynamics of the glassy and the crystalline states - General kinetics of return to equilibrium -- 3.1. Stability and instability: application to oxide glasses -- 3.1.1. Stability and postulates of thermodynamics -- 3.1.2. The stability condition - Back to equilibrium.
3.1.3. Application to the specific case of the spinodal decomposition (cf. also chapter 4) -- 3.1.4. Generalization -- 3.2. Experimental methods for the determination of thermodynamic quantities at the equilibrium of a stable or metastable oxide glass or crystal -- 3.2.1. Overview of thermodynamic measurable quantities -- 3.2.2. Measurement of enthalpy increment, heat capacity and transition enthalpy -- 3.2.3. Measurement of the formation or mixing functions -- 3.2.4. Measurement of free enthalpy and derivative quantities by Knudsen Effusion Mass Spectrometry (KEMS) -- 3.2.5. Importance of coupling the methods -- 3.3. Parameters characterizing the metastable vitreous state -- 3.3.1. Thermodynamical description of the glass transition -- 3.3.2. The fictive temperature and its measurement -- 3.3.3. Configurational entropy at 0 K and its measurement -- 3.3.4. Kinetic approach of the glassy transition - order parameter -- 3.4. Phenomenological approach of recrystallisation kinetics - Return to equilibrium -- 3.4.1. Transformation by nucleation and growth - constant rate -- 3.4.2. Transformation by nucleation and growth - constant growth rate, time-dependent germination rate -- 3.4.3. General form of the kinetic equation -- 3.4.4. In practice… -- 3.5. Conclusion -- Chapter 4. Phase separation processes in glass -- 4.1. Introduction -- 4.2. Thermodynamic description of phase separation -- 4.2.1. Solubility in ideal solutions -- 4.2.2. Immiscibility in regular solutions -- 4.2.3. Description of immiscibility regions in glass -- 4.3. Kinetics of phase separation -- 4.3.1. Effect of diffusion mode -- 4.3.2. Kinetics of phase separation by nucleation and growth -- 4.3.3. Spinodal decomposition: Approach adopted by Cahn and Hilliard -- 4.4. Influence of structure on the phase separation tendency of glass.
4.4.1. Structural models: binary silicate and borate systems -- 4.4.2. Effect of the addition of elements on phase separation -- 4.4.3. Structural characterisation tools -- 4.5. Characterisation of phase separation -- 4.5.1. Metastable phase separation -- 4.5.2. Stable phase separation extending into the metastable range -- 4.5.3. Example of phase separation mode -- Chapter 5. Solid-state chemistry approach of the main crystalline phases in glass-ceramics -- 5.1. Introduction -- 5.2. Silicate crystalline phases -- 5.2.1. General features -- 5.2.2. The six silicate families -- 5.2.3. Silica polymorphs -- 5.3. Phosphates -- 5.3.1. Consequence of phosphorus pentavalency -- 5.3.2. Phosphate families -- 5.3.3. Formation of non-phosphate crystals in phosphate based glass matrices -- 5.4. Other crystalline phases -- 5.5. Conclusion -- Chapter 6. Elaboration and control of glass-ceramic microstructures -- 6.1. Interest of controlling glass-ceramic microstructure -- 6.2. Controllable parameters -- 6.2.1. Parent glass composition -- 6.2.2. Nucleation/growth mechanism -- 6.2.3. Thermal treatment -- 6.3. Elaboration processes -- 6.3.1. Classic methods -- 6.3.2. New glass-ceramic elaboration processes -- 6.4. Characterisation methods -- 6.5. Microstructure types -- 6.5.1. Spheroid microstructures -- 6.5.2. Needle-like microstructures -- 6.6. Designing glass-ceramics with desired properties by controlling the crystallisation process -- 6.6.1. Volume nucleation -- 6.6.2. Surface nucleation -- 6.6.3. Double nucleation -- 6.7. Perspectives -- Chapter 7. X-ray diffraction and glass-ceramic materials -- 7.1. Reminder -- 7.1.1. X-ray/matter interactions -- 7.1.2. Scattering by a single atom -- 7.1.3. The Bragg law -- 7.1.4. Reciprocal space and diffraction -- 7.1.5. Diffracted intensity and correction terms -- 7.1.6. Bragg peak profiles.
7.2. Sample preparation and acquisition geometry -- 7.2.1. Sample preparation -- 7.2.2. Acquisition geometry -- 7.3. Quantitative analysis -- 7.3.1. Samples with low absorption contrast -- 7.3.2. Samples with intermediate absorption contrast -- 7.3.3. Quantification for an "amorphous" phase‑containing compound -- 7.3.4. Example of phase quantification in a nuclear glass -- 7.4. Beyond conventional XRD analysis -- 7.5. Conclusion -- Chapter 8. Glass and crystallisation: mechanical properties -- 8.1. Effective elastic properties of glass-ceramics -- 8.2. Hardness of glass-ceramics -- 8.3. Strength and toughness of glass-ceramics -- 8.3.1. Theoretical and experimental considerations -- 8.3.2. Role of the microstructure -- 8.4. Residual stresses and cracking -- 8.4.1. Modelling residual stresses -- 8.4.2. Residual stresses and microcracking -- 8.4.3. Residual stress measurements -- 8.5. Anisotropy -- 8.6. Conclusion -- Chapter 9. Electron microscopy applied to the study of nucleation and crystallisation in glasses -- 9.1. Scanning Electron Microscopy -- 9.2. Transmission Electron Microscopy -- 9.2.1. Principle -- 9.2.2. TEM imaging techniques -- 9.2.3. STEM-HAADF -- 9.2.4. EELS -- 9.2.5. Chemical imaging: Energy Filtered TEM - EFTEM -- 9.2.6. Aberration correction in HRTEM and STEM -- 9.2.7. Sample preparation -- 9.3. Nucleation/growth -- 9.3.1. Observation and nature of initial crystals -- 9.3.2. Mechanisms of nucleation and role of nucleating agents -- 9.3.3. Secondary crystallisation -- 9.4. Heterogeneities and phase separation -- 9.5. Conclusion -- Chapter 10. X-ray and neutron small-angle scattering -- 10.1. Introduction -- 10.2. X-ray and neutron scattering: Specificities and complementarities -- 10.3. Distances and phenomena -- 10.3.1. Thermal density fluctuations -- 10.3.2. Chemical concentration fluctuations.
10.3.3. Supercritical fluctuations -- 10.4. Basic notions for small-angle scattering -- 10.5. Data analysis -- 10.6. Examples of applications -- 10.6.1. Detailed example of a liquid-liquid phase separation in a glass containing molybdenum -- 10.6.2. Other examples of study of phase separation -- 10.6.3. Nucleation study by SANS and SAXS -- 10.6.4. Example of nucleation and crystallisation in a glass by SANS -- 10.6.5. Example of nucleation and crystallisation in a cordierite glass by SAXS -- 10.7. Conclusion -- Chapter 11. Nuclear Magnetic Resonance: deciphering disorder and crystallisation phenomena in glassy materials -- 11.1. Introduction -- 11.2. Basic principles of NMR -- 11.2.1. NMR interactions: a fingerprint of the local environment -- 11.2.2. The solid-state NMR toolkit -- 11.3. Spectral signature of disorder in NMR and its resolution -- 11.3.1. NMR of disordered systems -- 11.3.2. Combining NMR with atomistic modelling -- 11.4. Application to crystallisation studies -- 11.5. Conclusion -- Chapter 12. Raman spectroscopy: a valuable tool to improve our understanding of nucleation and growth mechanism -- 12.1. Introduction -- 12.2. Principle of Raman spectrometry -- 12.3. Instrumentation and Analysis -- 12.3.1. HOLOLAB 5000 spectrometer -- 12.3.2. T64000 spectrometer and the confocal system -- 12.3.3. Sampling volume -- 12.3.4. Raman spectra intensity -- 12.3.5. Black body emission and limitation to performing in situ measurements at high temperature -- 12.3.6. Correction of the temperature effect and excitation wavelength -- 12.4. Various experimental studies -- 12.4.1. Nucleation and phase identification in the CaO-Al2O3-SiO2 system -- 12.4.2. Ex situ measurements of silicate apatite crystallisation in a borosilicate matrix -- 12.4.3. In situ study of silico apatite crystallisation in a borosilicate matrix.
12.4.4. Induced crystallisation by laser impact in GeO2 glass.
No detailed description available for "From glass to crystal".
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.