ORPP logo
Image from Google Jackets

Optimization of Energy Systems.

By: Contributor(s): Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2017Copyright date: ©2017Edition: 1st edDescription: 1 online resource (472 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118894507
Subject(s): Genre/Form: Additional physical formats: Print version:: Optimization of Energy SystemsDDC classification:
  • 621.042
LOC classification:
  • TJ163.9.D563 2017
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- Acknowledgements -- Preface -- Chapter 1 Thermodynamic Fundamentals -- 1.1 Introduction -- 1.2 Thermodynamics -- 1.3 The First Law of Thermodynamics -- 1.3.1 Thermodynamic System -- 1.3.2 Process -- 1.3.3 Cycle -- 1.3.4 Heat -- 1.3.5 Work -- 1.3.6 Thermodynamic Property -- 1.3.6.1 Specific Internal Energy -- 1.3.6.2 Specific Enthalpy -- 1.3.6.3 Specific Entropy -- 1.3.7 Thermodynamic Tables -- 1.3.8 Engineering Equation Solver (EES) -- 1.4 The Second Law of Thermodynamics -- 1.5 Reversibility and Irreversibility -- 1.6 Exergy -- 1.6.1 Exergy Associated with Kinetic and Potential Energy -- 1.6.2 Physical Exergy -- 1.6.3 Chemical Exergy -- 1.6.3.1 Standard Chemical Exergy -- 1.6.3.2 Chemical Exergy of Gas Mixtures -- 1.6.3.3 Chemical Exergy of Humid Air -- 1.6.3.4 Chemical Exergy of Liquid Water and Ice -- 1.6.3.5 Chemical Exergy for Absorption Chillers -- 1.6.4 Exergy Balance Equation -- 1.6.5 Exergy Efficiency -- 1.6.6 Procedure for Energy and Exergy Analyses -- 1.7 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 2 Modeling and Optimization -- 2.1 Introduction -- 2.2 Modeling -- 2.2.1 Air compressors -- 2.2.2 Gas Turbines -- 2.2.3 Pumps -- 2.2.4 Closed Heat Exchanger -- 2.2.5 Combustion Chamber (CC) -- 2.2.6 Ejector -- 2.2.7 Flat Plate Solar Collector -- 2.2.8 Solar Photovoltaic Thermal (PV/T) System -- 2.2.9 Solar Photovoltaic Panel -- 2.3 Optimization -- 2.3.1 System Boundaries -- 2.3.2 Objective Functions and System Criteria -- 2.3.3 Decision Variables -- 2.3.4 Constraints -- 2.3.5 Optimization Methods -- 2.3.5.1 Classical Optimization -- 2.3.5.2 Numerical Optimization Methods -- 2.3.5.3 Evolutionary Algorithms -- 2.4 Multi-objective Optimization -- 2.4.1 Sample Applications of Multi-objective Optimization -- 2.4.1.1 Economics -- 2.4.1.2 Finance -- 2.4.1.3 Engineering.
2.4.2 Illustrative Example: Air Compressor Optimization -- 2.4.2.1 Thermodynamic and Economic Modeling and Analysis -- 2.4.2.2 Decision Variables -- 2.4.2.3 Constraints -- 2.4.2.4 Multi-objective Optimization -- 2.4.3 llustrative Example: Steam Turbine -- 2.4.3.1 Decision Variables -- 2.4.3.2 Constraints -- 2.4.3.3 Multi-objective Optimization -- 2.5 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 3 Modeling and Optimization of Thermal Components -- 3.1 Introduction -- 3.2 Air Compressor -- 3.3 Steam Turbine -- 3.4 Pump -- 3.4.1 Modeling and Simulation of a Pump -- 3.4.2 Decision variables -- 3.4.3 Constraints -- 3.4.4 Multi-objective Optimization of a Pump -- 3.5 Combustion Chamber -- 3.5.1 Modeling and Analysis of a Combustion Chamber -- 3.5.1.1 Total Cost Rate -- 3.5.2 Decision Variables -- 3.5.3 Constraints -- 3.5.4 Multi-objective Optimization -- 3.6 Flat Plate Solar Collector -- 3.6.1 Modeling and Analysis of Collector -- 3.6.2 Decision Variables and Input Data -- 3.6.3 Constraints -- 3.6.4 Multi-objective Optimization -- 3.7 Ejector -- 3.7.1 Modeling and Analysis of an Ejector -- 3.7.2 Decision Variables and Constraints -- 3.7.3 Objective Functions and Optimization -- 3.8 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 4 Modeling and Optimization of Heat Exchangers -- 4.1 Introduction -- 4.2 Types of Heat Exchangers -- 4.3 Modeling and Optimization of Shell and Tube Heat Exchangers -- 4.3.1 Modeling and Simulation -- 4.3.2 Optimization -- 4.3.2.1 Definition of Objective Functions -- 4.3.2.2 Decision Variables -- 4.3.3 Case Study -- 4.3.4 Model Verification -- 4.3.5 Optimization Results -- 4.3.6 Sensitivity Analysis Results -- 4.4 Modeling and Optimization of Cross Flow Plate Fin Heat Exchangers -- 4.4.1 Modeling and Simulation -- 4.4.2 Optimization -- 4.4.2.1 Decision Variables.
4.4.3 Case Study -- 4.4.4 Model Verification -- 4.4.5 Optimization Results -- 4.4.6 Sensitivity Analysis Results -- 4.5 Modeling and Optimization of Heat Recovery Steam Generators -- 4.5.1 Modeling and Simulation -- 4.5.2 Optimization -- 4.5.2.1 Decision Variables -- 4.5.3 Case Study -- 4.5.4 Modeling Verification -- 4.5.5 Optimization Results -- 4.5.6 Sensitivity Analysis Results -- 4.6 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 5 Modeling and Optimization of Refrigeration Systems -- 5.1 Introduction -- 5.2 Vapor Compression Refrigeration Cycle -- 5.2.1 Thermodynamic Analysis -- 5.2.2 Exergy Analysis -- 5.2.3 Optimization -- 5.2.3.1 Decision Variables -- 5.2.3.2 Optimization Results -- 5.3 Cascade Refrigeration Systems -- 5.4 Absorption Chiller -- 5.4.1 Thermodynamic Analysis -- 5.4.2 Exergy Analysis -- 5.4.3 Exergoeconomic Analysis -- 5.4.4 Results and Discussion -- 5.4.4.1 Optimization -- 5.4.4.2 Optimization Results -- 5.5 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 6 Modeling and Optimization of Heat Pump Systems -- 6.1 Introduction -- 6.2 Air/Water Heat Pump System -- 6.3 System Exergy Analysis -- 6.4 Energy and Exergy Results -- 6.5 Optimization -- 6.6 Concluding Remarks -- Reference -- Study Questions/Problems -- Chapter 7 Modeling and Optimization of Fuel Cell Systems -- 7.1 Introduction -- 7.2 Thermodynamics of Fuel Cells -- 7.2.1 Gibbs Function -- 7.2.2 Reversible Cell Potential -- 7.3 PEM Fuel Cell Modeling -- 7.3.1 Exergy and Exergoeconomic Analyses -- 7.3.2 Multi-objective Optimization of a PEM Fuel Cell System -- 7.4 SOFC Modeling -- 7.4.1 Mathematical Model -- 7.4.2 Cost Analysis -- 7.4.3 Optimization -- 7.5 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 8 Modeling and Optimization of Renewable Energy Based Systems -- 8.1 Introduction.
8.2 Ocean Thermal Energy Conversion (OTEC) -- 8.2.1 Thermodynamic Modeling of OTEC -- 8.2.1.1 Flat Plate Solar Collector -- 8.2.1.2 Organic Rankine Cycle (ORC) -- 8.2.1.3 PEM Electrolyzer -- 8.2.2 Thermochemical Modeling of a PEM Electrolyzer -- 8.2.3 Exergy Analysis -- 8.2.4 Efficiencies -- 8.2.4.1 Exergy Efficiency -- 8.2.5 Exergoeconomic Analysis -- 8.2.5.1 Flat Plate Solar Collector in OTEC Cycle -- 8.2.5.2 OTEC Cycle -- 8.2.6 Results and Discussion -- 8.2.6.1 Modeling Validation and Simulation Code Results -- 8.2.6.2 Exergy Analysis Results -- 8.2.7 Multi-objective Optimization -- 8.2.7.1 Objectives -- 8.2.7.2 Decision Variables -- 8.2.8 Optimization Results -- 8.3 Solar Based Energy System -- 8.3.1 Thermodynamic Analysis -- 8.3.2 Exergoeconomic Analysis -- 8.3.3 Results and Discussion -- 8.3.3.1 Exergoeconomic Results -- 8.3.4 Sensitivity Analysis -- 8.3.5 Optimization -- 8.3.6 Optimization Results -- 8.4 Hybrid Wind-Photovoltaic-Battery System -- 8.4.1 Modeling -- 8.4.1.1 Photovoltaic (PV) Panel -- 8.4.1.2 Wind Turbine (WT) -- 8.4.1.3 Battery -- 8.4.2 Objective Function, Design Parameters, and Constraints -- 8.4.3 Real Parameter Genetic Algorithm -- 8.4.4 Case Study -- 8.4.5 Results and Discussion -- 8.5 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 9 Modeling and Optimization of Power Plants -- 9.1 Introduction -- 9.2 Steam Power Plants -- 9.2.1 Modeling and Analysis -- 9.2.2 Objective Functions, Design Parameters, and Constraints -- 9.3 Gas Turbine Power Plants -- 9.3.1 Thermodynamic Modeling -- 9.3.1.1 Air Compressor -- 9.3.1.2 Air Preheater (AP) -- 9.3.1.3 Combustion Chamber (CC) -- 9.3.1.4 Gas Turbine -- 9.3.2 Exergy and Exergoeconomic Analyses -- 9.3.3 Environmental Impact Assessment -- 9.3.4 Optimization -- 9.3.4.1 Definition of Objective Functions -- 9.3.4.2 Decision Variables -- 9.3.4.3 Model Validation.
9.3.5 Results and Discussion -- 9.3.6 Sensitivity Analysis -- 9.3.7 Summary -- 9.4 Combined Cycle Power Plants -- 9.4.1 Thermodynamic Modeling -- 9.4.1.1 Duct Burner -- 9.4.1.2 Heat Recovery Steam Generator (HRSG) -- 9.4.1.3 Steam Turbine (ST) -- 9.4.1.4 Condenser -- 9.4.1.5 Pump -- 9.4.2 Exergy Analysis -- 9.4.3 Optimization -- 9.4.3.1 Definition of Objectives -- 9.4.3.2 Decision Variables -- 9.4.3.3 Constraints -- 9.4.4 Results and Discussion -- 9.5 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 10 Modeling and Optimization of Cogeneration and Trigeneration Systems -- 10.1 Introduction -- 10.2 Gas Turbine Based CHP System -- 10.2.1 Thermodynamic Modeling and Analyses -- 10.2.1.1 Air Preheater -- 10.2.1.2 Heat Recovery Steam Generator (HRSG) -- 10.2.2 Optimization -- 10.2.2.1 Single Objective Optimization -- 10.2.2.2 Multi-objective Optimization -- 10.2.2.3 Optimization Results -- 10.3 Internal Combustion Engine (ICE) Cogeneration Systems -- 10.3.1 Selection of Working Fluids -- 10.3.2 Thermodynamic Modeling and Analysis -- 10.3.2.1 Internal Combustion Engine -- 10.3.2.2 Organic Rankine Cycle -- 10.3.2.3 Ejector Refrigeration Cycle (ERC) -- 10.3.3 Exergy Analysis -- 10.3.4 Optimization -- 10.3.4.1 Decision Variables -- 10.3.4.2 Multi-objective optimization -- 10.4 Micro Gas Turbine Trigeneration System -- 10.4.1 Thermodynamic Modeling -- 10.4.1.1 Topping Cycle (Brayton Cycle) -- 10.4.1.2 Bottoming Cycle -- 10.4.1.3 Absorption Chiller -- 10.4.1.4 Domestic Water Heater -- 10.4.2 Exergy Analysis -- 10.4.3 Optimization -- 10.4.3.1 Definition of Objectives -- 10.4.3.2 Decision Variables -- 10.4.3.3 Evolutionary Algorithm: Genetic Algorithm -- 10.4.4 Optimization Results -- 10.4.5 Sensitivity Analysis -- 10.5 Biomass Based Trigeneration System -- 10.5.1 Thermodynamic Modeling -- 10.5.1.1 Gasifier.
10.5.1.2 Multi-effect Desalination Unit.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- Acknowledgements -- Preface -- Chapter 1 Thermodynamic Fundamentals -- 1.1 Introduction -- 1.2 Thermodynamics -- 1.3 The First Law of Thermodynamics -- 1.3.1 Thermodynamic System -- 1.3.2 Process -- 1.3.3 Cycle -- 1.3.4 Heat -- 1.3.5 Work -- 1.3.6 Thermodynamic Property -- 1.3.6.1 Specific Internal Energy -- 1.3.6.2 Specific Enthalpy -- 1.3.6.3 Specific Entropy -- 1.3.7 Thermodynamic Tables -- 1.3.8 Engineering Equation Solver (EES) -- 1.4 The Second Law of Thermodynamics -- 1.5 Reversibility and Irreversibility -- 1.6 Exergy -- 1.6.1 Exergy Associated with Kinetic and Potential Energy -- 1.6.2 Physical Exergy -- 1.6.3 Chemical Exergy -- 1.6.3.1 Standard Chemical Exergy -- 1.6.3.2 Chemical Exergy of Gas Mixtures -- 1.6.3.3 Chemical Exergy of Humid Air -- 1.6.3.4 Chemical Exergy of Liquid Water and Ice -- 1.6.3.5 Chemical Exergy for Absorption Chillers -- 1.6.4 Exergy Balance Equation -- 1.6.5 Exergy Efficiency -- 1.6.6 Procedure for Energy and Exergy Analyses -- 1.7 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 2 Modeling and Optimization -- 2.1 Introduction -- 2.2 Modeling -- 2.2.1 Air compressors -- 2.2.2 Gas Turbines -- 2.2.3 Pumps -- 2.2.4 Closed Heat Exchanger -- 2.2.5 Combustion Chamber (CC) -- 2.2.6 Ejector -- 2.2.7 Flat Plate Solar Collector -- 2.2.8 Solar Photovoltaic Thermal (PV/T) System -- 2.2.9 Solar Photovoltaic Panel -- 2.3 Optimization -- 2.3.1 System Boundaries -- 2.3.2 Objective Functions and System Criteria -- 2.3.3 Decision Variables -- 2.3.4 Constraints -- 2.3.5 Optimization Methods -- 2.3.5.1 Classical Optimization -- 2.3.5.2 Numerical Optimization Methods -- 2.3.5.3 Evolutionary Algorithms -- 2.4 Multi-objective Optimization -- 2.4.1 Sample Applications of Multi-objective Optimization -- 2.4.1.1 Economics -- 2.4.1.2 Finance -- 2.4.1.3 Engineering.

2.4.2 Illustrative Example: Air Compressor Optimization -- 2.4.2.1 Thermodynamic and Economic Modeling and Analysis -- 2.4.2.2 Decision Variables -- 2.4.2.3 Constraints -- 2.4.2.4 Multi-objective Optimization -- 2.4.3 llustrative Example: Steam Turbine -- 2.4.3.1 Decision Variables -- 2.4.3.2 Constraints -- 2.4.3.3 Multi-objective Optimization -- 2.5 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 3 Modeling and Optimization of Thermal Components -- 3.1 Introduction -- 3.2 Air Compressor -- 3.3 Steam Turbine -- 3.4 Pump -- 3.4.1 Modeling and Simulation of a Pump -- 3.4.2 Decision variables -- 3.4.3 Constraints -- 3.4.4 Multi-objective Optimization of a Pump -- 3.5 Combustion Chamber -- 3.5.1 Modeling and Analysis of a Combustion Chamber -- 3.5.1.1 Total Cost Rate -- 3.5.2 Decision Variables -- 3.5.3 Constraints -- 3.5.4 Multi-objective Optimization -- 3.6 Flat Plate Solar Collector -- 3.6.1 Modeling and Analysis of Collector -- 3.6.2 Decision Variables and Input Data -- 3.6.3 Constraints -- 3.6.4 Multi-objective Optimization -- 3.7 Ejector -- 3.7.1 Modeling and Analysis of an Ejector -- 3.7.2 Decision Variables and Constraints -- 3.7.3 Objective Functions and Optimization -- 3.8 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 4 Modeling and Optimization of Heat Exchangers -- 4.1 Introduction -- 4.2 Types of Heat Exchangers -- 4.3 Modeling and Optimization of Shell and Tube Heat Exchangers -- 4.3.1 Modeling and Simulation -- 4.3.2 Optimization -- 4.3.2.1 Definition of Objective Functions -- 4.3.2.2 Decision Variables -- 4.3.3 Case Study -- 4.3.4 Model Verification -- 4.3.5 Optimization Results -- 4.3.6 Sensitivity Analysis Results -- 4.4 Modeling and Optimization of Cross Flow Plate Fin Heat Exchangers -- 4.4.1 Modeling and Simulation -- 4.4.2 Optimization -- 4.4.2.1 Decision Variables.

4.4.3 Case Study -- 4.4.4 Model Verification -- 4.4.5 Optimization Results -- 4.4.6 Sensitivity Analysis Results -- 4.5 Modeling and Optimization of Heat Recovery Steam Generators -- 4.5.1 Modeling and Simulation -- 4.5.2 Optimization -- 4.5.2.1 Decision Variables -- 4.5.3 Case Study -- 4.5.4 Modeling Verification -- 4.5.5 Optimization Results -- 4.5.6 Sensitivity Analysis Results -- 4.6 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 5 Modeling and Optimization of Refrigeration Systems -- 5.1 Introduction -- 5.2 Vapor Compression Refrigeration Cycle -- 5.2.1 Thermodynamic Analysis -- 5.2.2 Exergy Analysis -- 5.2.3 Optimization -- 5.2.3.1 Decision Variables -- 5.2.3.2 Optimization Results -- 5.3 Cascade Refrigeration Systems -- 5.4 Absorption Chiller -- 5.4.1 Thermodynamic Analysis -- 5.4.2 Exergy Analysis -- 5.4.3 Exergoeconomic Analysis -- 5.4.4 Results and Discussion -- 5.4.4.1 Optimization -- 5.4.4.2 Optimization Results -- 5.5 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 6 Modeling and Optimization of Heat Pump Systems -- 6.1 Introduction -- 6.2 Air/Water Heat Pump System -- 6.3 System Exergy Analysis -- 6.4 Energy and Exergy Results -- 6.5 Optimization -- 6.6 Concluding Remarks -- Reference -- Study Questions/Problems -- Chapter 7 Modeling and Optimization of Fuel Cell Systems -- 7.1 Introduction -- 7.2 Thermodynamics of Fuel Cells -- 7.2.1 Gibbs Function -- 7.2.2 Reversible Cell Potential -- 7.3 PEM Fuel Cell Modeling -- 7.3.1 Exergy and Exergoeconomic Analyses -- 7.3.2 Multi-objective Optimization of a PEM Fuel Cell System -- 7.4 SOFC Modeling -- 7.4.1 Mathematical Model -- 7.4.2 Cost Analysis -- 7.4.3 Optimization -- 7.5 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 8 Modeling and Optimization of Renewable Energy Based Systems -- 8.1 Introduction.

8.2 Ocean Thermal Energy Conversion (OTEC) -- 8.2.1 Thermodynamic Modeling of OTEC -- 8.2.1.1 Flat Plate Solar Collector -- 8.2.1.2 Organic Rankine Cycle (ORC) -- 8.2.1.3 PEM Electrolyzer -- 8.2.2 Thermochemical Modeling of a PEM Electrolyzer -- 8.2.3 Exergy Analysis -- 8.2.4 Efficiencies -- 8.2.4.1 Exergy Efficiency -- 8.2.5 Exergoeconomic Analysis -- 8.2.5.1 Flat Plate Solar Collector in OTEC Cycle -- 8.2.5.2 OTEC Cycle -- 8.2.6 Results and Discussion -- 8.2.6.1 Modeling Validation and Simulation Code Results -- 8.2.6.2 Exergy Analysis Results -- 8.2.7 Multi-objective Optimization -- 8.2.7.1 Objectives -- 8.2.7.2 Decision Variables -- 8.2.8 Optimization Results -- 8.3 Solar Based Energy System -- 8.3.1 Thermodynamic Analysis -- 8.3.2 Exergoeconomic Analysis -- 8.3.3 Results and Discussion -- 8.3.3.1 Exergoeconomic Results -- 8.3.4 Sensitivity Analysis -- 8.3.5 Optimization -- 8.3.6 Optimization Results -- 8.4 Hybrid Wind-Photovoltaic-Battery System -- 8.4.1 Modeling -- 8.4.1.1 Photovoltaic (PV) Panel -- 8.4.1.2 Wind Turbine (WT) -- 8.4.1.3 Battery -- 8.4.2 Objective Function, Design Parameters, and Constraints -- 8.4.3 Real Parameter Genetic Algorithm -- 8.4.4 Case Study -- 8.4.5 Results and Discussion -- 8.5 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 9 Modeling and Optimization of Power Plants -- 9.1 Introduction -- 9.2 Steam Power Plants -- 9.2.1 Modeling and Analysis -- 9.2.2 Objective Functions, Design Parameters, and Constraints -- 9.3 Gas Turbine Power Plants -- 9.3.1 Thermodynamic Modeling -- 9.3.1.1 Air Compressor -- 9.3.1.2 Air Preheater (AP) -- 9.3.1.3 Combustion Chamber (CC) -- 9.3.1.4 Gas Turbine -- 9.3.2 Exergy and Exergoeconomic Analyses -- 9.3.3 Environmental Impact Assessment -- 9.3.4 Optimization -- 9.3.4.1 Definition of Objective Functions -- 9.3.4.2 Decision Variables -- 9.3.4.3 Model Validation.

9.3.5 Results and Discussion -- 9.3.6 Sensitivity Analysis -- 9.3.7 Summary -- 9.4 Combined Cycle Power Plants -- 9.4.1 Thermodynamic Modeling -- 9.4.1.1 Duct Burner -- 9.4.1.2 Heat Recovery Steam Generator (HRSG) -- 9.4.1.3 Steam Turbine (ST) -- 9.4.1.4 Condenser -- 9.4.1.5 Pump -- 9.4.2 Exergy Analysis -- 9.4.3 Optimization -- 9.4.3.1 Definition of Objectives -- 9.4.3.2 Decision Variables -- 9.4.3.3 Constraints -- 9.4.4 Results and Discussion -- 9.5 Concluding Remarks -- References -- Study Questions/Problems -- Chapter 10 Modeling and Optimization of Cogeneration and Trigeneration Systems -- 10.1 Introduction -- 10.2 Gas Turbine Based CHP System -- 10.2.1 Thermodynamic Modeling and Analyses -- 10.2.1.1 Air Preheater -- 10.2.1.2 Heat Recovery Steam Generator (HRSG) -- 10.2.2 Optimization -- 10.2.2.1 Single Objective Optimization -- 10.2.2.2 Multi-objective Optimization -- 10.2.2.3 Optimization Results -- 10.3 Internal Combustion Engine (ICE) Cogeneration Systems -- 10.3.1 Selection of Working Fluids -- 10.3.2 Thermodynamic Modeling and Analysis -- 10.3.2.1 Internal Combustion Engine -- 10.3.2.2 Organic Rankine Cycle -- 10.3.2.3 Ejector Refrigeration Cycle (ERC) -- 10.3.3 Exergy Analysis -- 10.3.4 Optimization -- 10.3.4.1 Decision Variables -- 10.3.4.2 Multi-objective optimization -- 10.4 Micro Gas Turbine Trigeneration System -- 10.4.1 Thermodynamic Modeling -- 10.4.1.1 Topping Cycle (Brayton Cycle) -- 10.4.1.2 Bottoming Cycle -- 10.4.1.3 Absorption Chiller -- 10.4.1.4 Domestic Water Heater -- 10.4.2 Exergy Analysis -- 10.4.3 Optimization -- 10.4.3.1 Definition of Objectives -- 10.4.3.2 Decision Variables -- 10.4.3.3 Evolutionary Algorithm: Genetic Algorithm -- 10.4.4 Optimization Results -- 10.4.5 Sensitivity Analysis -- 10.5 Biomass Based Trigeneration System -- 10.5.1 Thermodynamic Modeling -- 10.5.1.1 Gasifier.

10.5.1.2 Multi-effect Desalination Unit.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.