Metallic Biomaterials : New Directions and Technologies.
Material type:
- text
- computer
- online resource
- 9783527342433
- 610.28
- R857.M3 .M483 2017
Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Authors -- Chapter 1 Introduction -- 1.1 Traditional Metallic Biomaterials -- 1.2 Revolutionizing Metallic Biomaterials and Their New Biofunctions -- 1.2.1 What are Revolutionizing Metallic Biomaterials? -- 1.2.2 Antibacterial Function -- 1.2.3 Promotion of Osteogenesis -- 1.2.4 Reduction of In‐stent Restenosis -- 1.2.5 MRI Compatibility -- 1.2.6 Radiopacity -- 1.2.7 Self‐Adjustment of Young's Modulus for Spinal Fixation Applications -- 1.3 Technical Consideration on Alloying Design of Revolutionizing Metallic Biomaterials -- 1.3.1 Evolution of Mechanical Properties with Implantation Time -- 1.3.2 Biocorrosion or Biodegradation Behavior and Control on Ion Release -- 1.4 Novel Process Technologies for Revolutionizing Metallic Biomaterials -- 1.4.1 3D Printing -- 1.4.2 Safety and Effectiveness of Biofunctions -- 1.4.3 Severe Plastic Deformation -- References -- Chapter 2 Introduction of the Biofunctions into Traditional Metallic Biomaterials -- 2.1 Antibacterial Metallic Biomaterials -- 2.1.1 Antibacterial Metals -- 2.1.2 Antibacterial Stainless Steels -- 2.1.3 Antibacterial Ti Alloys -- 2.1.4 Antibacterial Mg Alloys -- 2.1.5 Antibacterial Bulk Metallic Glasses -- 2.2 MRI Compatibility of Metallic Biomaterials -- 2.2.1 MRI Compatibility of Traditional Metallic Biomaterials -- 2.2.2 MRI‐Compatible Zr Alloys -- 2.2.3 MRI‐Compatible Nb Alloys -- 2.2.4 Other MRI‐Compatible Alloys -- 2.3 Radiopacity of Metallic Biomaterials -- 2.3.1 Stainless Steel Stents -- 2.3.2 Co-Cr Stents -- 2.3.3 Nitinol Stents -- 2.3.4 Ta Stents -- 2.3.5 Other Metallic Stents -- References -- Chapter 3 Development of Mg-Based Degradable Metallic Biomaterials -- 3.1 Background -- 3.2 Mg-Based Alloy Design and Selection Considerations -- 3.2.1 Biodegradation -- 3.2.2 Biocompatibility.
3.2.3 Considerations in Mg-Based Alloy Design -- 3.2.4 Methods to Improve Mechanical Property -- 3.3 State of the Art of the Mg-Based Alloy Material Research -- 3.3.1 Pure Mg -- 3.3.2 Mg-Based Alloys with Essential Elements -- 3.3.3 Mg-Based Alloys with High Strength -- 3.3.4 Mg-Based Alloys with Special Biofunctions -- 3.3.5 Mg-Based Alloys with Improved Corrosion Resistance -- 3.3.6 Mg-Based Alloys with Bioactive Surfaces -- 3.4 State of the Art of Medical Mg-Based Alloy Device Research -- 3.4.1 Cardiovascular Devices -- 3.4.2 Orthopedic Devices -- 3.5 Challenges and Opportunities for Mg-Based Biomedical Materials and Devices -- References -- Chapter 4 Development of Fe-Based Degradable Metallic Biomaterials -- 4.1 Background -- 4.2 Pure Iron -- 4.2.1 Mechanical Properties of Pure Iron -- 4.2.2 Metabolism and Toxicity of Pure Iron -- 4.2.3 Basic Properties of Pure Iron -- 4.2.4 Degradation Behavior of Pure Iron in the Physiological Environment -- 4.2.5 In Vitro Experiments of Pure Iron -- 4.2.6 In Vivo Experiments of Pure Iron -- 4.3 Iron Alloys -- 4.4 Iron-Based Composites -- 4.4.1 Compositing with Metals -- 4.4.2 Compositing with Nonmetallic Materials -- 4.4.3 In Vitro Biocompatibility of Iron-Based Composites -- 4.5 Surface Modification of Iron-Based Materials -- 4.5.1 Surface Modification for Improving Biocompatibility -- 4.5.2 Surface Modification for Regulating Degradation Behavior -- 4.6 New Fabrication Technologies for Iron-Based Materials -- 4.6.1 Electroforming -- 4.6.2 Equal Channel Angular Pressing -- 4.6.3 Metal Injection Molding -- 4.6.4 Cold Gas Dynamic Spraying -- 4.6.5 3D Printing -- 4.7 Outlook -- References -- Chapter 5 Development of Zn-Based Degradable Metallic Biomaterials -- 5.1 Backgrounds -- 5.2 Body Zn Distribution and Mobilization -- 5.3 The Physiological Function of Zn.
5.4 State of the Art of the Zn-Based Alloy Material Research -- 5.4.1 Pure Zn -- 5.4.2 Binary Zn-Based Alloys -- 5.4.3 Ternary Zn-Based Alloys -- 5.4.4 Zn-Based Composites -- 5.5 Challenges and Opportunities for Zn-Based Biomedical Materials and Devices -- References -- Chapter 6 Development of Bulk Metallic Glasses for Biomedical Application -- 6.1 Background -- 6.1.1 Oxide Glasses as Biomaterials -- 6.1.2 Bulk Metallic Glasses -- 6.1.3 Fabrication of Bulk Metallic Glasses -- 6.1.4 Properties of Bulk Metallic Glasses -- 6.2 Nonbiodegradable Bulk Metallic Glasses -- 6.2.1 Ti‐Based Bulk Metallic Glasses -- 6.2.2 Zr‐Based Bulk Metallic Glasses -- 6.2.3 Fe‐Based Bulk Metallic Glasses -- 6.3 Biodegradable Bulk Metallic Glasses -- 6.3.1 Mg‐Based Bulk Metallic Glasses -- 6.3.2 Ca‐Based Bulk Metallic Glasses -- 6.3.3 Zn‐Based Bulk Metallic Glasses -- 6.3.4 Sr‐Based Bulk Metallic Glasses -- 6.4 Perspectives on Future R& -- D of Bulk Metallic Glass for Biomedical Application -- 6.4.1 How to Design Better Bulk Metallic Glasses -- 6.4.2 Surface Modification of Bulk Metallic Glasses -- 6.4.3 How to Manufacture Medical Devices Using Bulk Metallic Glasses -- 6.4.4 Future Biomedical Application Areas of Bulk Metallic Glass -- References -- Chapter 7 Development of Bulk Nanostructured Metallic Biomaterials -- 7.1 Background -- 7.1.1 Processing Methods -- 7.1.2 Property Variation -- 7.1.3 Structure-Property Relationship -- 7.2 Representative Bulk Nanostructured Metallic Biomaterials -- 7.2.1 Pure Ti -- 7.2.2 Ti Alloys -- 7.2.3 Stainless Steels -- 7.2.4 Co-Cr-Mo Alloy -- 7.2.5 Mg Alloys -- 7.2.6 Pure Fe and Other Fe‐Based Alloys -- 7.2.7 Pure Cu -- 7.2.8 Pure Ta -- 7.2.9 Pure Zr -- 7.3 Future Prospect on Bulk Nanostructured Metallic Biomaterials -- References -- Chapter 8 Titanium Implants Based on Additive Manufacture -- 8.1 Introduction.
8.2 AM Technologies Applicable for Ti-Based Alloys -- 8.2.1 Powder Materials Used in AM Technology -- 8.2.2 Architecture Design in AM Technology -- 8.2.3 Processing Methods of AM Technology -- 8.2.4 Posttreatment of AM Technology -- 8.2.5 Surface Forming Quality of AM Technology -- 8.3 Microstructure and Performance Evaluation of Ti-Based Alloys Fabricated by AM Technology -- 8.3.1 Microstructure of Ti-Based Alloys Fabricated by AM Technology -- 8.3.2 Mechanical Properties of Ti-Based Alloys Fabricated by AM Technology -- 8.3.3 In Vitro Biological Evaluation of Ti-Based Implants Fabricated by AM Technology -- 8.3.4 Animal Experiments of Ti-Based Implants Fabricated by AM Technology -- 8.3.5 Clinical Trials of Ti-Based Implants Fabricated by AM Technology -- 8.4 Prospects -- References -- Chapter 9 Future Research on Revolutionizing Metallic Biomaterials -- 9.1 Tissue Engineering Scaffolds with Revolutionizing Metallic Biomaterials -- 9.2 Building Up of Multifunctions for Revolutionizing Metallic Biomaterials -- 9.3 Intelligentization for Revolutionizing Metallic Biomaterials -- References -- Index -- EULA.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.