ORPP logo
Image from Google Jackets

Metrology and Standardization for Nanotechnology : Protocols and Industrial Innovations.

By: Contributor(s): Material type: TextTextSeries: Applications of Nanotechnology SeriesPublisher: Newark : John Wiley & Sons, Incorporated, 2017Copyright date: ©2017Edition: 1st edDescription: 1 online resource (629 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783527800292
Subject(s): Genre/Form: Additional physical formats: Print version:: Metrology and Standardization for NanotechnologyDDC classification:
  • 620.5
LOC classification:
  • T174.7.M48 2017
Online resources:
Contents:
Metrology and Standardization for Nanotechnology: Protocols and Industrial Innovations -- Contents -- Foreword -- Preface -- 1: Introduction: An Overview of Nanotechnolgy and Nanomaterial Standardization and Opportunities and Challenges -- 1.1 Standards and Standardization -- 1.2 Nanotechnology Standardization -- 1.2.1 Technology Standardization -- 1.2.2 Development of Standards for Nanotechnology -- 1.2.3 Nanotechnology Standards Development in Europe -- 1.2.4 Working with the Organization for Economic Cooperation and Development -- 1.3 Nanomaterial Standardization -- 1.4 Challenges -- 1.4.1 Data and Information Gaps -- 1.4.2 Competing Priorities -- 1.4.3 Knowledge of Standards Availability and Their Use -- 1.5 Opportunities -- 1.6 Summary -- Part One: Nanotechnology Basics: Definitions, Synthesis, and Properties -- 2: Nanotechnology Definitions at ISO and ASTM International: Origin, Usage, and Relationship to Nomenclature and Regulatory and Metrology Activities -- 2.1 Introduction -- 2.2 Context based on Size, Property, and Regulatory Framework -- 2.2.1 Nanoscale -- 2.2.2 Properties -- 2.2.3 Nanotechnology Description and Regulatory Framework -- 2.3 Nano-objects: Particles, Shapes, and Shape Descriptors -- 2.3.1 Particle and Nanoscale -- 2.3.2 Cartesian Coordinates to Describe Shape -- 2.3.3 Shape Descriptors (Object, Particle, Fiber, and Plate) -- 2.4 Collections of Nano-Objects -- 2.4.1 Aggregates and Agglomerates -- 2.4.2 Nanostructured -- 2.4.3 Dispersions and Composites -- 2.5 Layers and Coatings as Surface Chemistry -- 2.6 National Definitions -- 2.7 Nomenclature -- 2.7.1 Background Considerations -- 2.7.2 Commercial Nomenclature -- 2.7.3 Nomenclature as Enumeration -- 2.7.4 Focus, Categories, and Data Sets -- 2.8 Terminology as a Controlled Vocabulary and Nomenclature as Knowledge Organization -- 2.9 Concluding Remarks -- Acknowledgments.
References -- 3: Engineered Nanomaterials: a Discussion of the Major Categories of Nanomaterials -- 3.1 Description of Nanotechnology and Nanomaterials -- 3.2 Nanomaterials' Morphologies -- 3.2.1 Zero-Dimensional Nanomaterials -- 3.2.2 One-Dimensional Nanomaterials -- 3.2.3 Two-Dimensional Nanomaterials -- 3.2.4 Three-Dimensional Nanomaterials -- 3.3 Types of Nanomaterials -- 3.3.1 Inorganic -- 3.3.1.1 Metal Nanoparticles -- 3.3.1.2 Other Inorganic Nanoparticles -- 3.3.1.3 Ceramics -- 3.3.1.4 Semiconductors -- 3.3.1.5 Inorganic-Organic Nanomaterials -- 3.3.2 Organic -- 3.3.2.1 Carbon Nanomaterials -- 3.3.2.2 Other Organic Nanomaterials -- 3.3.3 Nanocomposites -- 3.4 Properties of Nanomaterials -- 3.4.1 Mechanical Properties -- 3.4.2 Electrical Properties -- 3.4.3 Magnetic Properties -- 3.4.4 Thermal Properties -- 3.4.5 Optical Properties -- 3.4.6 Biological Properties -- 3.5 Applications of Nanomaterials and Nanocomposites -- 3.5.1 Nanodispersions -- 3.5.2 Nanocrystalline Solids -- 3.5.2.1 Nanostructured Titanium -- 3.5.2.2 Nanostructured Stainless Steel -- 3.5.2.3 Other Nanometals -- 3.5.2.4 Nanoceramics -- 3.5.2.5 Carbon Nanomaterials -- 3.5.2.6 Dendrimers -- 3.5.3 Nanocomposites -- 3.5.3.1 Hydrogen Storage -- 3.5.3.2 Bionanocomposites -- 3.5.3.3 Hard RE-3d Magnets -- 3.5.3.4 Polymer Nanocomposites -- 3.6 Conclusions and Outlook -- References -- 4: Nanomaterials Synthesis Methods -- 4.1 Classification -- 4.2 Physical Methods -- 4.2.1 Physical Vapor Deposition -- 4.2.2 Pulsed Laser Deposition -- 4.2.3 Ion Beam Techniques -- 4.2.4 Plasma Synthesis -- 4.3 Chemical Methods -- 4.3.1 Chemical Vapor Deposition -- 4.3.2 Epitaxial Growth -- 4.3.3 Colloidal Dispersion -- 4.3.4 Sol-Gel -- 4.3.5 Hydrothermal Route -- 4.3.6 Microemulsions -- 4.3.7 Polymer Route -- 4.4 Mechanical Methods -- 4.4.1 Milling Processes -- 4.4.1.1 Mechanical Alloying.
4.4.1.2 High-Energy Ball Milling -- 4.4.1.3 Mechanochemical Synthesis -- 4.4.1.4 Mechanochemical Activation Synthesis -- 4.4.2 Severe Plastic Deformation -- 4.4.2.1 Equal Channel Angular Pressing -- 4.4.2.2 Cyclic Extrusion Compression Method -- 4.4.2.3 High-Pressure Torsion -- 4.4.2.4 Other Severe Plastic Deformation Methods -- 4.4.3 Lithography -- 4.4.4 Micromachining -- 4.4.5 Etching -- 4.5 Biological Synthesis -- 4.6 Summary -- References -- 5: Physicochemical Properties of Engineered Nanomaterials -- 5.1 Introduction -- 5.2 Composition -- 5.3 Size and Size Distribution -- 5.4 Morphology and Shape -- 5.5 Aggregation and Agglomeration -- 5.6 Surface Properties -- 5.7 Conclusions and Outlook -- References -- 6: Biological Properties of Engineered Nanomaterials -- 6.1 Introduction -- 6.2 Biological Properties of ENMs -- 6.2.1 ENMs in Biological Systems under Physiological or Pathological Conditions -- 6.2.2 Effects of Biological Processes on the Fate of ENMs in Biological Systems -- 6.2.2.1 Routes of Exposure or Administration -- 6.2.2.2 Biodistribution -- 6.2.2.3 Binding with Biomolecules -- 6.2.2.4 Entry into the Cell -- 6.2.2.5 Clearance/Excretion/Degradation -- 6.3 Metrology and Standardization of ENMs in the Context of Biological Properties -- 6.3.1 Characterization of ENMs -- 6.3.2 Penetration into Biological Barriers and Biodistribution -- 6.3.3 Binding with Biomolecules -- 6.3.4 Entry into the Cell -- 6.4 Conclusions -- References -- Part Two: Metrology for Engineered Nanomaterials -- 7: Characterization of Nanomaterials -- 7.1 Introduction -- 7.2 Size -- 7.3 Shape -- 7.4 Surface -- 7.5 Solubility -- 7.6 International Standards and Standardization -- 7.7 Summary -- Acknowledgments -- References -- 8: Principal Metrics and Instrumentation for Characterization of Engineered Nanomaterials -- 8.1 Introduction.
8.2 ENM Metrics and Instrumentation for Characterization -- 8.2.1 Surface Area -- 8.2.2 Bulk Chemical Composition -- 8.2.3 Surface Chemistry -- 8.2.4 Particle Size -- 8.2.5 Particle Size Distribution -- 8.2.6 Morphology/Shape -- 8.2.7 Surface Charge -- 8.2.8 Agglomeration/Aggregation State -- 8.2.9 Crystal Structure -- 8.2.10 Solubility -- 8.3 Summary -- List of Abbreviations -- Disclaimer -- References -- 9: Analytical Measurements of Nanoparticles in Challenging and Complex Environments -- 9.1 Introduction -- 9.2 Nanoparticle Measurements in Soils and Sediments -- 9.3 Nanoparticle Measurements in Air -- 9.4 Nanoparticle Measurements in Cosmetics -- 9.5 Nanoparticle Measurements in Aquatic Environments -- 9.6 Nanoparticle Measurements in Foods -- 9.7 Nanoparticle Measurements in Biological Matrices -- 9.8 Key Challenges for Characterizing Nanoparticle Sizes and Shapes in Biological Matrices -- 9.9 Key Challenges in the Quantitative Measurement of Nanoparticles in Biological Matrices -- 9.10 Key Challenges for Determining Nanoparticle Dose/Concentration in Biological Matrices -- 9.11 Key Challenges in Measuring Nanoparticle Agglomeration in Biological Matrices -- 9.12 Notable Instrumentation for Characterizing Nanoparticles in Biological Matrices -- 9.13 Concluding Remarks -- NIST Disclaimer -- List of Acronyms -- References -- 10: Metrology for the Dimensional Parameter Study of Nanoparticles -- 10.1 Introduction -- 10.2 Traceability of the Dimensional Measurements at the Nanoscale -- 10.2.1 How to Make the Measurement Reliable and Comparable? -- 10.2.2 Traceability Routes -- 10.3 Measuring the Nanoparticle Size -- 10.3.1 Direct and Indirect Measuring Techniques -- 10.3.1.1 Direct Techniques -- 10.3.1.2 Indirect Techniques -- 10.3.2 Measuring Methods by Microscopy-based Techniques -- 10.3.2.1 Sample Preparation.
10.3.2.2 Calibration/Metrological Characterization of Instruments -- 10.3.2.3 Measurement Principle and Acquisition -- 10.3.2.4 Image Analysis and Data Processing -- 10.3.3 Assessment of Error Sources in Microscopy -- 10.3.3.1 Type A Uncertainties -- 10.3.3.2 Type B Uncertainties -- 10.4 Conclusions -- References -- 11: Analytical Nanoscopic Techniques: Nanoscale Properties -- 11.1 Introduction -- 11.2 Historical Overview of Analytical Nanoscopic Techniques -- 11.3 Scanning Probe Microscopy -- 11.3.1 Scanning Tunneling Microscopy -- 11.3.2 Atomic Force Microscopy -- 11.3.3 SPMs for Nanoscale Property -- 11.3.4 Standardization of SPMs -- 11.4 Electron Microscopy -- 11.4.1 Principle of Electron Microscopy -- 11.4.2 Applications of EMs in Nanomaterials -- 11.4.3 Standardization of Electron Microscopy -- 11.5 Emerging Nanocharacterization Techniques -- 11.5.1 Scanning Helium Ion Microscopy -- 11.5.2 Atom Probe Field Ion Microscope -- 11.5.3 Scanning Auger Microscopy -- 11.5.4 Nano SIMS -- 11.5.5 Electron Emission Microscopy -- 11.6 Summary -- References -- 12: Tribological Testing and Standardization at the Micro- and Nanoscale -- 12.1 Introduction -- 12.2 A Brief History of Tribology -- 12.3 Scale Effects in Tribology Testing -- 12.4 Experimental Methods for Tribology Characterization -- 12.4.1 Nano- and Micro-tribological Characterization -- 12.4.1.1 Surface Force Apparatus -- 12.4.1.2 Lateral Force Microscope -- 12.4.1.3 Triboindenter -- 12.4.2 Comparison of the Methods -- 12.4.3 Example: The Tribology of Single-Crystal Silicon at Different Scales -- 12.5 International Standardization in Micro- and Nanotechnology -- 12.5.1 International Standards in the Area of Tribology -- 12.5.2 The ISO/TR 11811 Technical Report -- 12.5.3 Problems of the ISO/TR 11811 Technical Report -- Acknowledgments -- References -- 13: Stochastic Aspects of Sizing Nanoparticles.
13.1 Introduction.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Metrology and Standardization for Nanotechnology: Protocols and Industrial Innovations -- Contents -- Foreword -- Preface -- 1: Introduction: An Overview of Nanotechnolgy and Nanomaterial Standardization and Opportunities and Challenges -- 1.1 Standards and Standardization -- 1.2 Nanotechnology Standardization -- 1.2.1 Technology Standardization -- 1.2.2 Development of Standards for Nanotechnology -- 1.2.3 Nanotechnology Standards Development in Europe -- 1.2.4 Working with the Organization for Economic Cooperation and Development -- 1.3 Nanomaterial Standardization -- 1.4 Challenges -- 1.4.1 Data and Information Gaps -- 1.4.2 Competing Priorities -- 1.4.3 Knowledge of Standards Availability and Their Use -- 1.5 Opportunities -- 1.6 Summary -- Part One: Nanotechnology Basics: Definitions, Synthesis, and Properties -- 2: Nanotechnology Definitions at ISO and ASTM International: Origin, Usage, and Relationship to Nomenclature and Regulatory and Metrology Activities -- 2.1 Introduction -- 2.2 Context based on Size, Property, and Regulatory Framework -- 2.2.1 Nanoscale -- 2.2.2 Properties -- 2.2.3 Nanotechnology Description and Regulatory Framework -- 2.3 Nano-objects: Particles, Shapes, and Shape Descriptors -- 2.3.1 Particle and Nanoscale -- 2.3.2 Cartesian Coordinates to Describe Shape -- 2.3.3 Shape Descriptors (Object, Particle, Fiber, and Plate) -- 2.4 Collections of Nano-Objects -- 2.4.1 Aggregates and Agglomerates -- 2.4.2 Nanostructured -- 2.4.3 Dispersions and Composites -- 2.5 Layers and Coatings as Surface Chemistry -- 2.6 National Definitions -- 2.7 Nomenclature -- 2.7.1 Background Considerations -- 2.7.2 Commercial Nomenclature -- 2.7.3 Nomenclature as Enumeration -- 2.7.4 Focus, Categories, and Data Sets -- 2.8 Terminology as a Controlled Vocabulary and Nomenclature as Knowledge Organization -- 2.9 Concluding Remarks -- Acknowledgments.

References -- 3: Engineered Nanomaterials: a Discussion of the Major Categories of Nanomaterials -- 3.1 Description of Nanotechnology and Nanomaterials -- 3.2 Nanomaterials' Morphologies -- 3.2.1 Zero-Dimensional Nanomaterials -- 3.2.2 One-Dimensional Nanomaterials -- 3.2.3 Two-Dimensional Nanomaterials -- 3.2.4 Three-Dimensional Nanomaterials -- 3.3 Types of Nanomaterials -- 3.3.1 Inorganic -- 3.3.1.1 Metal Nanoparticles -- 3.3.1.2 Other Inorganic Nanoparticles -- 3.3.1.3 Ceramics -- 3.3.1.4 Semiconductors -- 3.3.1.5 Inorganic-Organic Nanomaterials -- 3.3.2 Organic -- 3.3.2.1 Carbon Nanomaterials -- 3.3.2.2 Other Organic Nanomaterials -- 3.3.3 Nanocomposites -- 3.4 Properties of Nanomaterials -- 3.4.1 Mechanical Properties -- 3.4.2 Electrical Properties -- 3.4.3 Magnetic Properties -- 3.4.4 Thermal Properties -- 3.4.5 Optical Properties -- 3.4.6 Biological Properties -- 3.5 Applications of Nanomaterials and Nanocomposites -- 3.5.1 Nanodispersions -- 3.5.2 Nanocrystalline Solids -- 3.5.2.1 Nanostructured Titanium -- 3.5.2.2 Nanostructured Stainless Steel -- 3.5.2.3 Other Nanometals -- 3.5.2.4 Nanoceramics -- 3.5.2.5 Carbon Nanomaterials -- 3.5.2.6 Dendrimers -- 3.5.3 Nanocomposites -- 3.5.3.1 Hydrogen Storage -- 3.5.3.2 Bionanocomposites -- 3.5.3.3 Hard RE-3d Magnets -- 3.5.3.4 Polymer Nanocomposites -- 3.6 Conclusions and Outlook -- References -- 4: Nanomaterials Synthesis Methods -- 4.1 Classification -- 4.2 Physical Methods -- 4.2.1 Physical Vapor Deposition -- 4.2.2 Pulsed Laser Deposition -- 4.2.3 Ion Beam Techniques -- 4.2.4 Plasma Synthesis -- 4.3 Chemical Methods -- 4.3.1 Chemical Vapor Deposition -- 4.3.2 Epitaxial Growth -- 4.3.3 Colloidal Dispersion -- 4.3.4 Sol-Gel -- 4.3.5 Hydrothermal Route -- 4.3.6 Microemulsions -- 4.3.7 Polymer Route -- 4.4 Mechanical Methods -- 4.4.1 Milling Processes -- 4.4.1.1 Mechanical Alloying.

4.4.1.2 High-Energy Ball Milling -- 4.4.1.3 Mechanochemical Synthesis -- 4.4.1.4 Mechanochemical Activation Synthesis -- 4.4.2 Severe Plastic Deformation -- 4.4.2.1 Equal Channel Angular Pressing -- 4.4.2.2 Cyclic Extrusion Compression Method -- 4.4.2.3 High-Pressure Torsion -- 4.4.2.4 Other Severe Plastic Deformation Methods -- 4.4.3 Lithography -- 4.4.4 Micromachining -- 4.4.5 Etching -- 4.5 Biological Synthesis -- 4.6 Summary -- References -- 5: Physicochemical Properties of Engineered Nanomaterials -- 5.1 Introduction -- 5.2 Composition -- 5.3 Size and Size Distribution -- 5.4 Morphology and Shape -- 5.5 Aggregation and Agglomeration -- 5.6 Surface Properties -- 5.7 Conclusions and Outlook -- References -- 6: Biological Properties of Engineered Nanomaterials -- 6.1 Introduction -- 6.2 Biological Properties of ENMs -- 6.2.1 ENMs in Biological Systems under Physiological or Pathological Conditions -- 6.2.2 Effects of Biological Processes on the Fate of ENMs in Biological Systems -- 6.2.2.1 Routes of Exposure or Administration -- 6.2.2.2 Biodistribution -- 6.2.2.3 Binding with Biomolecules -- 6.2.2.4 Entry into the Cell -- 6.2.2.5 Clearance/Excretion/Degradation -- 6.3 Metrology and Standardization of ENMs in the Context of Biological Properties -- 6.3.1 Characterization of ENMs -- 6.3.2 Penetration into Biological Barriers and Biodistribution -- 6.3.3 Binding with Biomolecules -- 6.3.4 Entry into the Cell -- 6.4 Conclusions -- References -- Part Two: Metrology for Engineered Nanomaterials -- 7: Characterization of Nanomaterials -- 7.1 Introduction -- 7.2 Size -- 7.3 Shape -- 7.4 Surface -- 7.5 Solubility -- 7.6 International Standards and Standardization -- 7.7 Summary -- Acknowledgments -- References -- 8: Principal Metrics and Instrumentation for Characterization of Engineered Nanomaterials -- 8.1 Introduction.

8.2 ENM Metrics and Instrumentation for Characterization -- 8.2.1 Surface Area -- 8.2.2 Bulk Chemical Composition -- 8.2.3 Surface Chemistry -- 8.2.4 Particle Size -- 8.2.5 Particle Size Distribution -- 8.2.6 Morphology/Shape -- 8.2.7 Surface Charge -- 8.2.8 Agglomeration/Aggregation State -- 8.2.9 Crystal Structure -- 8.2.10 Solubility -- 8.3 Summary -- List of Abbreviations -- Disclaimer -- References -- 9: Analytical Measurements of Nanoparticles in Challenging and Complex Environments -- 9.1 Introduction -- 9.2 Nanoparticle Measurements in Soils and Sediments -- 9.3 Nanoparticle Measurements in Air -- 9.4 Nanoparticle Measurements in Cosmetics -- 9.5 Nanoparticle Measurements in Aquatic Environments -- 9.6 Nanoparticle Measurements in Foods -- 9.7 Nanoparticle Measurements in Biological Matrices -- 9.8 Key Challenges for Characterizing Nanoparticle Sizes and Shapes in Biological Matrices -- 9.9 Key Challenges in the Quantitative Measurement of Nanoparticles in Biological Matrices -- 9.10 Key Challenges for Determining Nanoparticle Dose/Concentration in Biological Matrices -- 9.11 Key Challenges in Measuring Nanoparticle Agglomeration in Biological Matrices -- 9.12 Notable Instrumentation for Characterizing Nanoparticles in Biological Matrices -- 9.13 Concluding Remarks -- NIST Disclaimer -- List of Acronyms -- References -- 10: Metrology for the Dimensional Parameter Study of Nanoparticles -- 10.1 Introduction -- 10.2 Traceability of the Dimensional Measurements at the Nanoscale -- 10.2.1 How to Make the Measurement Reliable and Comparable? -- 10.2.2 Traceability Routes -- 10.3 Measuring the Nanoparticle Size -- 10.3.1 Direct and Indirect Measuring Techniques -- 10.3.1.1 Direct Techniques -- 10.3.1.2 Indirect Techniques -- 10.3.2 Measuring Methods by Microscopy-based Techniques -- 10.3.2.1 Sample Preparation.

10.3.2.2 Calibration/Metrological Characterization of Instruments -- 10.3.2.3 Measurement Principle and Acquisition -- 10.3.2.4 Image Analysis and Data Processing -- 10.3.3 Assessment of Error Sources in Microscopy -- 10.3.3.1 Type A Uncertainties -- 10.3.3.2 Type B Uncertainties -- 10.4 Conclusions -- References -- 11: Analytical Nanoscopic Techniques: Nanoscale Properties -- 11.1 Introduction -- 11.2 Historical Overview of Analytical Nanoscopic Techniques -- 11.3 Scanning Probe Microscopy -- 11.3.1 Scanning Tunneling Microscopy -- 11.3.2 Atomic Force Microscopy -- 11.3.3 SPMs for Nanoscale Property -- 11.3.4 Standardization of SPMs -- 11.4 Electron Microscopy -- 11.4.1 Principle of Electron Microscopy -- 11.4.2 Applications of EMs in Nanomaterials -- 11.4.3 Standardization of Electron Microscopy -- 11.5 Emerging Nanocharacterization Techniques -- 11.5.1 Scanning Helium Ion Microscopy -- 11.5.2 Atom Probe Field Ion Microscope -- 11.5.3 Scanning Auger Microscopy -- 11.5.4 Nano SIMS -- 11.5.5 Electron Emission Microscopy -- 11.6 Summary -- References -- 12: Tribological Testing and Standardization at the Micro- and Nanoscale -- 12.1 Introduction -- 12.2 A Brief History of Tribology -- 12.3 Scale Effects in Tribology Testing -- 12.4 Experimental Methods for Tribology Characterization -- 12.4.1 Nano- and Micro-tribological Characterization -- 12.4.1.1 Surface Force Apparatus -- 12.4.1.2 Lateral Force Microscope -- 12.4.1.3 Triboindenter -- 12.4.2 Comparison of the Methods -- 12.4.3 Example: The Tribology of Single-Crystal Silicon at Different Scales -- 12.5 International Standardization in Micro- and Nanotechnology -- 12.5.1 International Standards in the Area of Tribology -- 12.5.2 The ISO/TR 11811 Technical Report -- 12.5.3 Problems of the ISO/TR 11811 Technical Report -- Acknowledgments -- References -- 13: Stochastic Aspects of Sizing Nanoparticles.

13.1 Introduction.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.