Thermal Management of Electric Vehicle Battery Systems.
Material type:
- text
- computer
- online resource
- 9781118900215
- 629.25024
- TL220.D563 2017
Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgements -- Chapter 1 Introductory Aspects of Electric Vehicles -- 1.1 Introduction -- 1.2 Technology Development and Commercialization -- 1.3 Vehicle Configurations -- 1.3.1 Internal Combustion Engine Vehicles (ICEV) -- 1.3.2 All Electric Vehicles (AEVs) -- 1.3.3 Hybrid Electric Vehicles (HEVs) -- 1.3.4 Fuel Cell Vehicles (FCVs) -- 1.4 Hybridization Rate -- 1.4.1 Micro HEVs -- 1.4.2 Mild HEVs -- 1.4.3 Full or Power-Assist HEVs -- 1.4.4 Plug-In HEVs (or Range-Extended Hybrids) -- 1.5 Vehicle Architecture -- 1.5.1 Series HEVs -- 1.5.2 Parallel HEVs -- 1.5.3 Parallel/Series HEVs -- 1.5.4 Complex HEVs -- 1.6 Energy Storage System -- 1.6.1 Batteries -- 1.6.2 Ultracapacitors (UCs) -- 1.6.3 Flywheels -- 1.6.4 Fuel Cells -- 1.7 Grid Connection -- 1.7.1 Charger Power Levels and Infrastructure -- 1.7.2 Conductive Charging -- 1.7.3 Inductive Charging -- 1.7.4 Smart Grid and V2G/V2H/V2X Systems -- 1.8 Sustainability, Environmental Impact and Cost Aspects -- 1.9 Vehicle Thermal Management -- 1.9.1 Radiator Circuit -- 1.9.2 Power Electronics Circuit -- 1.9.3 Drive Unit Circuit -- 1.9.4 A/C Circuit -- 1.10 Vehicle Drive Patterns and Cycles -- 1.11 Case Study -- 1.11.1 Introduction -- 1.11.2 Research Programs -- 1.11.3 Government Incentives -- 1.12 Concluding Remarks -- Nomenclature -- Study Questions/Problems -- References -- Chapter 2 Electric Vehicle Battery Technologies -- 2.1 Introduction -- 2.2 Current Battery Technologies -- 2.2.1 Lead Acid Batteries -- 2.2.2 Nickel Cadmium Batteries -- 2.2.3 Nickel Metal Hydride Batteries -- 2.2.4 Lithium-Ion Batteries -- 2.3 Battery Technologies under Development -- 2.3.1 Zinc-Air Batteries -- 2.3.2 Sodium-Air Batteries -- 2.3.3 Lithium-Sulfur Batteries -- 2.3.4 Aluminum-Air Batteries -- 2.3.5 Lithium-Air Batteries -- 2.4 Battery Characteristics.
2.4.1 Battery Cost -- 2.4.2 Battery Environmental Impact -- 2.4.3 Battery Material Resources -- 2.4.4 Impact of Various Loads and Environmental Conditions -- 2.5 Battery Management Systems -- 2.5.1 Data Acquisition -- 2.5.2 Battery States Estimation -- 2.5.3 Charge Equalization -- 2.5.4 Safety Management/Fault Diagnosis -- 2.5.5 Thermal Management -- 2.6 Battery Manufacturing and Testing Processes -- 2.6.1 Manufacturing Processes -- 2.6.2 Testing Processes -- 2.7 Concluding Remarks -- Nomenclature -- Study Questions/Problems -- References -- Chapter 3 Phase Change Materials for Passive TMSs -- 3.1 Introduction -- 3.2 Basic Properties and Types of PCMs -- 3.2.1 Organic PCMs -- 3.2.2 Inorganic PCMs -- 3.2.3 Eutectics -- 3.3 Measurement of Thermal Properties of PCMs -- 3.4 Heat Transfer Enhancements -- 3.5 Cost and Environmental Impact of Phase Change Materials -- 3.6 Applications of PCMs -- 3.7 Case Study I: Heat Exchanger Design and Optimization Model for EV Batteries using PCMs -- 3.7.1 System Description and Parameters -- 3.7.2 Design and Optimization of the Latent Heat Thermal Energy Storage System -- 3.8 Case Study 2: Melting and Solidification of Paraffin in a Spherical Shell from Forced External Convection -- 3.8.1 Validation of Numerical Model and Model Independence Testing -- 3.8.2 Performance Criteria -- 3.8.3 Results and Discussion -- 3.9 Concluding Remarks -- Nomenclature -- Study Questions/Problems -- References -- Chapter 4 Simulation and Experimental Investigation of Battery TMSs -- 4.1 Introduction -- 4.2 Numerical Model Development for Cell and Submodules -- 4.2.1 Physical Model for Numerical Study of PCM Application -- 4.2.2 Initial and Boundary Conditions and Model Assumptions -- 4.2.3 Material Properties and Model Input Parameters -- 4.2.4 Governing Equations and Constitutive Laws -- 4.2.5 Model Development for Simulations.
4.3 Cell and Module Level Experimentation Set Up and Procedure -- 4.3.1 Instrumentation of the Cell and Submodule -- 4.3.2 Instrumentation of the Heat Exchanger -- 4.3.3 Preparation of PCMs and Nano-Particle Mixtures -- 4.3.4 Improving Surface Arrangements of Particles -- 4.3.5 Setting up the Test Bench -- 4.4 Vehicle Level Experimentation Set Up and Procedure -- 4.4.1 Setting Up the Data Acquisition Hardware -- 4.4.2 Setting Up the Data Acquisition Software -- 4.5 Illustrative Example: Simulations and Experimentations on the Liquid Battery Thermal Management System Using PCMs -- 4.5.1 Simulations and Experimentations on Cell Level -- 4.5.2 Simulation and Experimentations Between the Cells in the Submodule -- 4.5.3 Simulations and Experimentations on a Submodule Level -- 4.5.4 Optical Observations -- 4.5.5 Vehicle Level Experimentations -- 4.5.6 Case Study Conclusions -- 4.6 Concluding Remarks -- Nomenclature -- Study Questions/Problems -- References -- Chapter 5 Energy and Exergy Analyses of Battery TMSs -- 5.1 Introduction -- 5.2 TMS Comparison -- 5.2.1 Thermodynamic Analysis -- 5.2.2 Battery Heat Transfer Analysis -- 5.3 Modeling of Major TMS Components -- 5.3.1 Compressor -- 5.3.2 Heat Exchangers -- 5.3.3 Thermal Expansion Valve (TXV) -- 5.3.4 Electric Battery -- 5.3.5 System Parameters -- 5.4 Energy and Exergy Analyses -- 5.4.1 Conventional Analysis -- 5.4.2 Enhanced Exergy Analysis -- 5.5 Illustrative Example: Liquid Battery Thermal Management Systems -- 5.6 Case Study: Transcritical CO2-Based Electric Vehicle BTMS -- 5.6.1 Introduction -- 5.6.2 System Development -- 5.6.3 Thermodynamic Analysis -- 5.6.4 Results and Discussion -- 5.6.5 Case Study Conclusions -- 5.7 Concluding Remarks -- Nomenclature -- Study Questions/Problems -- References -- Chapter 6 Cost, Environmental Impact and Multi-Objective Optimization of Battery TMSs.
6.1 Introduction -- 6.2 Exergoeconomic Analysis -- 6.2.1 Cost Balance Equations -- 6.2.2 Purchase Equipment Cost Correlations -- 6.2.3 Cost Accounting -- 6.2.4 Exergoeconomic Evaluation -- 6.2.5 Enhanced Exergoeconomic Analysis -- 6.2.6 Enviroeconomic (Environmental Cost) Analysis -- 6.3 Exergoenvironmental Analysis -- 6.3.1 Environmental Impact Balance Equations -- 6.3.2 Environmental Impact Correlations -- 6.3.3 LCA of the Electric Battery -- 6.3.4 Environmental Impact Accounting -- 6.3.5 Exergoenvironmental Evaluation -- 6.4 Optimization Methodology -- 6.4.1 Objective Functions -- 6.4.2 Decision Variables and Constraints -- 6.4.3 Genetic Algorithm -- 6.5 Illustrative Example: Liquid Battery Thermal Management Systems -- 6.5.1 Conventional Exergoeconomic Analysis Results -- 6.5.2 Enhanced Exergoeconomic Analysis Results -- 6.5.3 Battery Environmental Impact Assessment -- 6.5.4 Exergoenvironmental Analysis Results -- 6.5.5 Multi-Objective Optimization Results -- 6.6 Concluding Remarks -- Nomenclature -- Study Questions/Problems -- References -- Chapter 7 Case Studies -- 7.1 Introduction -- 7.2 Case Study 1: Economic and Environmental Comparison of Conventional, Hybrid, Electric and Hydrogen Fuel Cell Vehicles -- 7.2.1 Introduction -- 7.2.2 Analysis -- 7.2.3 Results and Discussion -- 7.2.4 Closing Remarks -- 7.3 Case Study 2: Experimental and Theoretical Investigation of Temperature Distributions in a Prismatic Lithium-Ion Battery -- 7.3.1 Introduction -- 7.3.2 System Description -- 7.3.3 Analysis -- 7.3.4 Results and Discussion -- 7.3.5 Closing Remarks -- 7.4 Case Study 3: Thermal Management Solutions for Electric Vehicle Lithium-Ion Batteries based on Vehicle Charge and Discharge Cycles -- 7.4.1 Introduction -- 7.4.2 System Description -- 7.4.3 Analysis -- 7.4.4 Results and Discussion -- 7.4.5 Closing Remarks.
7.5 Case Study 4: Heat Transfer and Thermal Management of Electric Vehicle Batteries with Phase Change Materials -- 7.5.1 Introduction -- 7.5.2 System Description -- 7.5.3 Analysis -- 7.5.4 Results and Discussion -- 7.5.5 Closing Remarks -- 7.6 Case Study 5: Experimental and Theoretical Investigation of Novel Phase Change Materials For Thermal Applications -- 7.6.1 Introduction -- 7.6.2 System Description -- 7.6.3 Analysis -- 7.6.4 Results and Discussion -- 7.6.5 Closing Remarks -- Nomenclature -- References -- Chapter 8 Alternative Dimensions and Future Expectations -- 8.1 Introduction -- 8.2 Outstanding Challenges -- 8.2.1 Consumer Perceptions -- 8.2.2 Socio-Technical Factors -- 8.2.3 Self-Reinforcing Processes -- 8.3 Emerging EV Technologies and Trends -- 8.3.1 Active Roads -- 8.3.2 V2X and Smart Grid -- 8.3.3 Battery Swapping -- 8.3.4 Battery Second Use -- 8.4 Future BTM Technologies -- 8.4.1 Thermoelectric Materials -- 8.4.2 Magnetic Cooling -- 8.4.3 Piezoelectric Fans/Dual Cooling Jets -- 8.4.4 Other Potential BTMSs -- 8.5 Concluding Remarks -- Nomenclature -- Study Questions/Problems -- References -- Index -- EULA.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.