Milling Simulation : Metal Milling Mechanics, Dynamics and Clamping Principles.
Material type:
- text
- computer
- online resource
- 9781119262909
- 671.35
- TJ1225 -- .Z436 2016eb
Cover -- Title Page -- Copyright -- Contents -- Preface -- Introduction -- I.1. Cutting force modeling -- I.2. Surface quality simulation -- I.3. Chatter stability analysis -- I.4. Clamping system design -- I.5. Purpose of this book -- 1: Cutting Forces in Milling Processes -- 1.1. Formulations of cutting forces -- 1.1.1. Mechanics of orthogonal cutting -- 1.1.2. Cutting force model for a general milling cutter -- 1.2. Milling process geometry -- 1.2.1. Calculations of uncut chip thickness -- 1.2.2. Determination of entry and exit angles -- 1.2.2.1. Generation of analytic tool swept volume, removal volume and updated in-process workpiece -- 1.2.2.2. Generation of the feasible contact surfaces -- 1.2.2.3. Trimming removal volume with feasible contact surfaces -- 1.2.2.4. Extraction of the CWE surfaces from the removal volume -- 1.2.2.5. Procedure for calculating entry and exit angles -- 1.2.2.6. Numerical simulations -- 1.3. Identification of the cutting force coefficients -- 1.3.1. Calibration method for general end mills -- 1.3.1.1. Identification of the cutting force coefficients -- 1.3.1.2. Identification of the cutter runout parameters -- 1.3.1.3. Selection of cutting parameters -- 1.3.1.4. Test applications -- 1.3.2. Calibration method in the frequency domain -- 1.3.3. Calibration method involving four cutter runout parameters -- 1.3.3.1. Calibration of kq, mq (q = T,R,A) and ρ, λ -- 1.3.3.2. Calibration of ρT, λT, τT and ϑ -- 1.3.4. Identification of shear stress, shear angle and friction angle using milling tests -- 1.3.4.1. Determination of normal friction angle βn -- 1.3.4.2. Determination of shear angle ψn and chip flow angle η -- 1.3.4.3. Determination of shear stress τs -- 1.4. Ternary cutting force model including bottom edge cutting effect -- 1.4.1. Calculations of FB(ϕ) -- 1.4.2. Calculations of FB(ϕ).
1.4.3. Calibration of Kqc (q = T,R) -- 1.4.4. Calibrations of Kq,B (q = T,R) -- 1.4.5. Experimental work -- 1.5. Cutting force prediction in peripheral milling of a curved surface -- 1.5.1. Calculations of instantaneous uncut chip thickness -- 1.5.2. Calculations of entry and exit angles -- 2: Surface Accuracy in Milling Processes -- 2.1. Predictions of surface form errors -- 2.1.1. Calculation of cutting forces and process geometries -- 2.1.1.1. Calculation of cutting forces -- 2.1.1.2. Calculation of θi,j(ϕ) and ui,j -- 2.1.1.3. Correction of workpiece rigidity due to material removal -- 2.1.2. Iterative algorithms of surface form errors -- 2.1.2.1. Development of algorithms -- 2.1.2.2. Example and experimental verification -- 2.2. Control strategy of surface form error -- 2.2.1. Development of control strategy -- 2.2.2. Verification of control strategy -- 2.3. Surface topography in milling processes -- 2.3.1. Prediction method for flat-end milling -- 2.3.1.1. Derivation of a simulation algorithm -- 2.3.1.2. Simulation examples and experimental verifications -- 2.3.2. Prediction method for multi-axis ball end milling -- 2.3.2.1. Derivation of simulation algorithm -- 2.3.2.2. Simulation examples and experimental verifications -- 3: Dynamics of Milling Processes -- 3.1. Governing equation of the milling process -- 3.2. Method for obtaining the frequency response function -- 3.2.1. Derivation of calculation formulations -- 3.2.1.1. Tool point dynamics analysis method -- 3.2.1.2. Solutions of the dynamic equations -- 3.2.2. Identification of model parameters -- 3.2.2.1. Calculation of spindle-holder assembly receptance -- 3.2.2.2. Identification of stiffness and damping coefficients of joint interfaces -- 3.2.2.3. Experimental identification of spindle-holder assembly receptances -- 3.3. Prediction of stability lobe.
3.3.1. Improved semi-discretization method -- 3.3.2. Lowest envelope method -- 3.3.2.1. Proof of the lowest envelope method -- 3.3.2.2. Premise of the lowest envelope method -- 3.3.3. Time-domain simulation method -- 4: Mathematical Modeling of the Workpiece-Fixture System -- 4.1. Criteria of locating scheme correctness -- 4.1.1. The DOFs constraining principle -- 4.1.2. The locating scheme -- 4.1.3. Judgment criteria of locating scheme correctness -- 4.1.4. Analysis of locating scheme incorrectness -- 4.2. Analysis of locating scheme correctness -- 4.2.1. Localization source errors -- 4.2.2. Fixture modeling -- 4.2.3. Locating scheme correctness -- 4.2.3.1. Locating principle -- 4.2.3.2. Robust design model of locating scheme -- 4.3. Analysis of workpiece stability -- 4.3.1. Modeling of workpiece stability -- 4.3.1.1. Workpiece static equilibrium constraints -- 4.3.1.2. Modeling of the clamping sequence -- 4.3.1.3. Friction cone constraints -- 4.3.1.4. Modeling of workpiece stability -- 4.3.2. Solution techniques to the model of workpiece stability -- 4.3.2.1. Linear programming techniques -- 4.3.2.2. Workpiece stability without friction -- 4.3.2.3. Workpiece stability with friction -- 4.4. Modeling of the workpiece-fixture geometric default and compliance -- 4.4.1. Source error analysis -- 4.4.1.1. Source errors due to workpiece-fixture geometric default -- 4.4.1.2. Source errors due to workpiece-fixture compliance -- 4.4.2. Workpiece position -- 4.4.2.1. Workpiece position error relative to geometric default [QIN 06b] -- 4.4.2.2. Workpiece position error relative to local deformation [QIN 05] -- 4.4.3. Machining error analysis -- 4.4.3.1. Machining error relative to geometric default -- 4.4.3.2. Machining error relative to workpiece-fixture compliance -- 4.4.3.3. Overall machining error -- 4.5. Optimal design of the fixture clamping sequence.
4.5.1. Effect of clamping sequence on high-stiffness workpiece -- 4.5.1.1. Description of multiple fixture elements -- 4.5.1.2. Mathematical modeling of clamping sequence -- 4.5.1.3. Determination of contact forces in the clamping sequence -- 4.5.2. Effect of clamping sequence on low-stiffness workpiece -- 4.5.3. Optimization of clamping sequence -- 4.5.3.1. Optimization of clamping sequence for high-stiffness workpiece -- 4.5.3.2. Optimization of clamping sequence for low-stiffness workpiece -- Bibliography -- Index -- Other titles from ISTE in Numerical Methods in Engineering -- EULA.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.