ORPP logo
Image from Google Jackets

CR Embedded Submanifolds of CR Manifolds.

By: Contributor(s): Material type: TextTextSeries: Memoirs of the American Mathematical Society SeriesPublisher: Providence : American Mathematical Society, 2019Copyright date: ©2019Edition: 1st edDescription: 1 online resource (94 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781470450731
Subject(s): Genre/Form: Additional physical formats: Print version:: CR Embedded Submanifolds of CR ManifoldsDDC classification:
  • 515/.39
LOC classification:
  • QA614.3 .C877 2019
Online resources:
Contents:
Cover -- Title page -- Chapter 1. Introduction -- Chapter 2. Weighted Tanaka-Webster Calculus -- Chapter 3. CR Tractor Calculus -- Chapter 4. CR Embedded Submanifolds and Contact Forms -- Chapter 5. CR Embedded Submanifolds and Tractors -- Chapter 6. Higher Codimension Embeddings -- Chapter 7. Invariants of CR Embedded Submanifolds -- Chapter 8. A CR Bonnet Theorem -- Bibliography -- Back Cover.
Summary: The authors develop a complete local theory for CR embedded submanifolds of CR manifolds in a way which parallels the Ricci calculus for Riemannian submanifold theory. They define a normal tractor bundle in the ambient standard tractor bundle along the submanifold and show that the orthogonal complement of this bundle is not canonically isomorphic to the standard tractor bundle of the submanifold. By determining the subtle relationship between submanifold and ambient CR density bundles the authors are able to invariantly relate these two tractor bundles, and hence to invariantly relate the normal Cartan connections of the submanifold and ambient manifold by a tractor analogue of the Gauss formula. This also leads to CR analogues of the Gauss, Codazzi, and Ricci equations. The tractor Gauss formula includes two basic invariants of a CR embedding which, along with the submanifold and ambient curvatures, capture the jet data of the structure of a CR embedding. These objects therefore form the basic building blocks for the construction of local invariants of the embedding. From this basis the authors develop a broad calculus for the construction of the invariants and invariant differential operators of CR embedded submanifolds. The CR invariant tractor calculus of CR embeddings is developed concretely in terms of the Tanaka-Webster calculus of an arbitrary (suitably adapted) ambient contact form. This enables straightforward and explicit calculation of the pseudohermitian invariants of the embedding which are also CR invariant. These are extremely difficult to find and compute by more naïve methods. The authors conclude by establishing a CR analogue of the classical Bonnet theorem in Riemannian submanifold theory.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title page -- Chapter 1. Introduction -- Chapter 2. Weighted Tanaka-Webster Calculus -- Chapter 3. CR Tractor Calculus -- Chapter 4. CR Embedded Submanifolds and Contact Forms -- Chapter 5. CR Embedded Submanifolds and Tractors -- Chapter 6. Higher Codimension Embeddings -- Chapter 7. Invariants of CR Embedded Submanifolds -- Chapter 8. A CR Bonnet Theorem -- Bibliography -- Back Cover.

The authors develop a complete local theory for CR embedded submanifolds of CR manifolds in a way which parallels the Ricci calculus for Riemannian submanifold theory. They define a normal tractor bundle in the ambient standard tractor bundle along the submanifold and show that the orthogonal complement of this bundle is not canonically isomorphic to the standard tractor bundle of the submanifold. By determining the subtle relationship between submanifold and ambient CR density bundles the authors are able to invariantly relate these two tractor bundles, and hence to invariantly relate the normal Cartan connections of the submanifold and ambient manifold by a tractor analogue of the Gauss formula. This also leads to CR analogues of the Gauss, Codazzi, and Ricci equations. The tractor Gauss formula includes two basic invariants of a CR embedding which, along with the submanifold and ambient curvatures, capture the jet data of the structure of a CR embedding. These objects therefore form the basic building blocks for the construction of local invariants of the embedding. From this basis the authors develop a broad calculus for the construction of the invariants and invariant differential operators of CR embedded submanifolds. The CR invariant tractor calculus of CR embeddings is developed concretely in terms of the Tanaka-Webster calculus of an arbitrary (suitably adapted) ambient contact form. This enables straightforward and explicit calculation of the pseudohermitian invariants of the embedding which are also CR invariant. These are extremely difficult to find and compute by more naïve methods. The authors conclude by establishing a CR analogue of the classical Bonnet theorem in Riemannian submanifold theory.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.