Liquid Acquisition Devices for Advanced in-Space Cryogenic Propulsion Systems.
Material type:
- text
- computer
- online resource
- 9780128039908
- 621.59
- TP482
Front Cover -- Liquid Acquisition Devices for Advanced In-Space Cryogenic Propulsion Systems -- Copyright -- Dedication -- Contents -- Foreword -- Preface -- Acknowledgments -- Chapter 1: Introduction -- 1.1. The Flexible Path -- 1.2. Fundamental Cryogenic Fluids -- 1.3. Motivation for Cryogenic Propulsion Technology Development -- 1.4. Existing Challenges with Cryogenic Propellants -- 1.5. Cryogenic Fluid Management Subsystems -- 1.6. Future Cryogenic Fluid Management Applications -- 1.6.1. In-Space Cryogenic Engines -- 1.6.2. In-Space Cryogenic Fuel Depots -- 1.7. Purpose of Work and Overview by Chapter -- Chapter 2: Background and Historical Review -- 2.1. Propellant Management Device Purpose -- 2.2. Other Types of Propellant Management Devices -- 2.3. Vanes -- 2.3.1. Design Concept, Basic Flow Physics, and Principle of Operation -- 2.3.2. Advantages and Disadvantages -- 2.3.3. Storable Propellant Historical Examples -- 2.3.3.1. Space Experiments -- 2.3.3.2. Vehicles and Missions -- 2.4. Sponges -- 2.4.1. Design Concept, Basic Flow Physics, and Principle of Operation -- 2.4.2. Advantages and Disadvantages -- 2.4.3. Storable Propellant Historical Examples -- 2.4.3.1. Space Experiments -- 2.4.3.2. Vehicles and Missions -- 2.5. Screen Channel Liquid Acquisition Devices -- 2.5.1. Design Concept, Basic Flow Physics, and Principle of Operation -- 2.5.2. Mesh and Metal Type -- 2.5.3. Advantages and Disadvantages -- 2.5.4. Storable Propellant Historical Examples -- 2.5.4.1. Space Experiments -- 2.5.4.2. Vehicles and Missions -- 2.5.5. Cryogenic Propellant Historical Examples -- 2.6. Propellant Management Device Combinations -- 2.7. NASA's Current Needs -- Chapter 3: Influential Factors and Physics-Based Modeling of Liquid Acquisition Devices -- 3.1. 1-g One Dimensional Simplified Pressure Drop Model -- 3.2. The Room Temperature Bubble Point Pressure.
3.2.1. Assumptions -- 3.2.2. Bubble Point Model Derivation -- 3.2.3. Types of Bubble Point Experiments -- 3.2.4. Surface Tension Model -- 3.2.5. Specifying the Effective Pore Diameter -- 3.2.6. Previously Reported Bubble Points -- 3.3. Hydrostatic Pressure Drop -- 3.4. Flow-Through-Screen Pressure Drop -- 3.4.1. Model Derivation -- 3.4.2. Model Parameters and Flow-Through-Screen Experiment -- 3.4.3. Historical Data and Trends -- 3.5. Frictional and Dynamic Pressure Drop -- 3.6. Wicking Rate -- 3.6.1. Model Derivation -- 3.6.2. Wicking Rate Experiment -- 3.6.3. Historical Data and Trends -- 3.7. Screen Compliance -- 3.7.1. Model Derivation and Screen Compliance Experiment -- 3.7.2. Historical Data and Trends -- 3.8. Material Compatibility -- 3.9. The Room Temperature Reseal Pressure Model -- 3.9.1. Model Derivation -- 3.9.2. Historical Data and Trends -- 3.9.3. Specifying the Reseal Diameter -- 3.10. Pressurant Gas Type -- 3.11. Concluding Remarks and Implications for Cryogenic Propulsion Systems -- Chapter 4: Room Temperature Liquid Acquisition Device Performance Experiments -- 4.1. Pure Fluid Tests -- 4.1.1. Scanning Electron Microscopy Analysis -- 4.1.2. Bubble Point Experimental Setup -- 4.1.3. Bubble Point Experimental Methodology and Data Reduction -- 4.1.4. Contact Angle Measurements -- 4.1.5. Experimental Bubble Point Results -- 4.2. Binary Mixture Tests -- 4.2.1. Experimental Setup, Methodology, and Data Reduction -- 4.2.2. Theoretical Predictions -- 4.2.2.1. Liquid/Vapor Surface Tension of the Methanol/Water Mixture -- 4.2.2.2. Contact Angle Measurements -- 4.2.3. Experimental Results -- 4.2.3.1. Bubble Point Pressure -- 4.2.3.2. Critical Zisman Surface Tension -- 4.3. Reseal Pressure Tests -- 4.4. Wicking Rate Tests -- 4.5. Concluding Remarks -- Chapter 5: Parametric Analysis of the Liquid Hydrogen and Nitrogen Bubble Point Pressure.
Chapter Outline -- 5.1. Test Purpose and Motivation -- 5.2. Experimental Design -- 5.2.1. Test Article and Facility -- 5.2.2. Instrumentation and Data Acquisition -- 5.2.3. Data Reduction -- 5.2.4. Test Matrix -- 5.3. Experimental Methodology -- 5.4. Experimental Results and Discussion -- 5.4.1. Screen Weave Dependence -- 5.4.2. Liquid Dependence -- 5.4.3. Liquid Temperature Dependence -- 5.4.4. Liquid Pressure Dependence -- 5.4.5. Pressurant Gas Dependence -- 5.5. Concluding Remarks -- Chapter 6: High-Pressure Liquid Oxygen Bubble Point Experiments -- 6.1. Test Purpose and Motivation -- 6.2. Experimental Design -- 6.2.1. Test Article and Facility -- 6.2.2. Instrumentation and Data Acquisition -- 6.2.3. Test Matrix -- 6.3. Experimental Methodology -- 6.4. Experimental Results and Discussion -- 6.4.1. Test Conditions -- 6.4.2. Elevated Temperature Dependence -- 6.4.3. Liquid Subcooling and Pressurant Gas Dependence -- 6.4.4. Heat Transfer Effects at Elevated Temperature -- 6.4.5. Analysis of Videos -- 6.5. Concluding Remarks -- Chapter 7: High-Pressure Liquid Methane Bubble Point Experiments -- 7.1. Test Purpose and Motivation -- 7.2. Experimental Design -- 7.2.1. Modifications to Facility, Test Article, and Instrumentation -- 7.2.2. Test Matrix -- 7.3. Experimental Results and Discussion -- 7.3.1. Test Conditions -- 7.3.2. Elevated Temperature Dependence -- 7.3.3. Liquid Subcooling and Pressurant Gas Dependence -- 7.4. Thermal Analysis -- 7.4.1. Heat Transfer at Breakdown -- 7.4.2. Interfacial Temperature -- 7.4.3. Condensation and Evaporation Mass Flux -- 7.4.3.1. Temperature and Pressure Data-Based -- 7.4.3.2. Kinetic Theory -- 7.4.4. Screen Reynolds Number -- 7.4.5. Heat Conduction into Liquid -- 7.5. Concluding Remarks -- Chapter 8: Warm Pressurant Gas Effects on the Static Bubble Point Pressure for Cryogenic Liquid Acquisition Devices.
8.1. Test Purpose and Motivation -- 8.2. Design Modifications -- 8.3. Experimental Methodology -- 8.4. Test Matrix -- 8.5. Warm Pressurant Gas Liquid Hydrogen Experiments -- 8.6. Warm Pressurant Gas Liquid Nitrogen Experiments -- 8.7. Concluding Remarks -- Chapter 9: Full-Scale Liquid Acquisition Device Outflow Tests in Liquid Hydrogen -- 9.1. Test Purpose and Motivation -- 9.2. Test Plan -- 9.3. Facility and Test Article -- 9.4. Horizontal Liquid Acquisition Device Tests -- 9.4.1. Test Description -- 9.4.2. Research Hardware -- 9.4.3. Instrumentation and Test Methodology -- 9.4.4. Experimental Results and Comparison to Model -- 9.5. Flow-Through-Screen Tests -- 9.5.1. Test Description -- 9.5.2. Research Hardware -- 9.5.3. Instrumentation -- 9.5.4. Test Methodology -- 9.5.5. Experimental Results and Comparison to Model -- 9.6. 1-g Inverted Vertical Liquid Acquisition Device Outflow Tests -- 9.6.1. Test Description -- 9.6.2. Research Hardware -- 9.6.2.1. Standard 325 x 2300 Channel -- 9.6.2.2. Thermodynamic Vent System Cooled 325 x 2300 Channel -- 9.6.3. Thermodynamic Vent System Heat Exchanger Analysis -- 9.6.4. Instrumentation -- 9.6.5. Test Methodology -- 9.6.6. Test Matrix -- 9.6.7. One-Dimensional Steady State Pressure Drop Model General Trends -- 9.6.8. Experimental Results -- 9.6.8.1. Screen Channel Bubble Point Tests in Isopropyl Alcohol -- 9.6.8.2. Standard 325x2300 Channel Performance -- 9.6.8.3. Thermodynamic Vent System Cooled 325x2300 Channel Performance -- 9.6.8.4. Thermodynamic Vent System Efficiency -- 9.6.8.5. Subcooling Effect -- 9.6.9. Comparison to One-Dimensional Model -- 9.7. Concluding Remarks -- Chapter 10: The Bubble Point Pressure Model for Cryogenic Propellants -- 10.1. Current Model Limitations -- 10.2. Summary of Data -- 10.3. Room Temperature Pore Diameter Model -- 10.3.1. Model -- 10.3.2. Maximum Bubble Point Pressure.
10.4. Pressurant Gas Model -- 10.5. Liquid Subcooling Model -- 10.6. Warm Pressurant Gas Model -- 10.7. Concluding Remarks -- Chapter 11: The Reseal Point Pressure Model for Cryogenic Propellants -- 11.1. Current Model Limitations -- 11.2. Summary of Data -- 11.3. Room Temperature Reseal Diameter Model -- 11.4. Pressurant Gas Model -- 11.5. Liquid Subcooling Model -- 11.6. Warm Pressurant Gas Model -- 11.7. Model Summary and Performance -- 11.8. Concluding Remarks -- Chapter 12: Analytical Model for Steady Flow through a Porous Liquid Acquisition Device Channel -- Chapter Outline -- 12.1. One-Dimensional Pressure Drop Model Drawbacks -- 12.2. Evolution of the Solution Method -- 12.3. Analytical Model Formulation -- 12.3.1. Assumptions -- 12.3.2. Governing Equations -- 12.3.3. Method of Solution -- 12.4. Model Results, Sensitivities, and Comparison to One-Dimensional Model -- 12.4.1. Validation of Laminar Channel Flow Assumption -- 12.4.2. Model Comparison to Liquid Oxygen Horizontal Liquid Acquisition Device Experiments -- 12.4.3. Model Comparison to Liquid Hydrogen 1-g Inverted Vertical Outflow Experiments -- 12.5. Dynamic Bubble Point Model -- 12.6. Convective Cooling of the Liquid Acquisition Device Screen -- 12.7. Concluding Remarks -- Chapter 13: Optimal Liquid Acquisition Device Screen Weave for a Liquid Hydrogen Fuel Depot -- 13.1. Background and Mission Requirements -- 13.2. Bubble Point Pressure and Flow-through-Screen Pressure Drop -- 13.3. Critical Mass Flux -- 13.4. Minimum Bubble Point -- 13.5. Minimum Screen Area -- 13.6. Other Considerations -- 13.7. Channel Number and Size -- 13.8. Concluding Remarks -- Chapter 14: Optimal Propellant Management Device for a Small-Scale Liquid Hydrogen Propellant Tank -- 14.1. Background and Mission Requirements -- 14.2. Analytical Screen Channel Flow Model in Microgravity.
14.2.1. Extension of 1-g Model to Microgravity.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.