ORPP logo
Image from Google Jackets

Phase Modeling Tools : Applications to Gases.

By: Material type: TextTextPublisher: Newark : John Wiley & Sons, Incorporated, 2015Copyright date: ©2015Edition: 1st edDescription: 1 online resource (301 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119178477
Subject(s): Genre/Form: Additional physical formats: Print version:: Phase Modeling ToolsLOC classification:
  • QC311 -- .S687 2015eb
Online resources:
Contents:
Cover -- Title Page -- Copyright -- Contents -- Preface -- Notations -- Symbols -- 1: Thermodynamic Functions and Variables -- 1.1. State variables and characteristic functions of a phase -- 1.1.1. Intensive and extensive conjugate variables -- 1.1.2. Variations in internal energy during a transformation -- 1.1.3. Characteristic function associated with a canonical set of variables -- 1.2. Partial molar parameters -- 1.2.1. Definition -- 1.2.2. Properties of partial molar variables -- 1.3. Chemical potential and generalized chemical potentials -- 1.3.1. Chemical potential and partial molar free enthalpy -- 1.3.2. Definition of generalized chemical potential -- 1.3.3. Variations in the chemical potential and generalized chemical potential with variables -- 1.3.3.1. Variations with intensive variables -- 1.3.3.2. Variations with composition -- 1.3.3.3. Total differential -- 1.3.4. Gibbs-Duhem relation -- 1.3.5. Generalized Helmholtz relations -- 1.3.6. Chemical system associated with the general system -- 1.4. The two modeling scales -- 2: Macroscopic Modeling of a Phase -- 2.1. Thermodynamic coefficients and characteristic matrices -- 2.1.1. Thermodynamic coefficients and characteristic matrix associated with the internal energy -- 2.1.2. Symmetry of the characteristic matrix -- 2.1.3. The thermodynamic coefficients needed and required to thermodynamically define the phase -- 2.1.4. Choosing other variables: thermodynamic coefficients and characteristic matrix associated with a characteristic function -- 2.1.5. Change in variable from one characteristic matrix to another -- 2.1.6. Relations between thermodynamic coefficients and secondary derivatives of the characteristic function -- 2.1.7. Examples of thermodynamic coefficients: calorimetric coefficients -- 2.2. Partial molar variables and thermodynamic coefficients.
2.3. Common variables and thermodynamic coefficients -- 2.3.1. State equation -- 2.3.2. Expansion coefficients -- 2.3.2.1. Cubic expansion coefficient (or coefficient of relative increase in volume) -- 2.3.2.2. Coefficient of pressure increase at a constant volume -- 2.3.2.3. Isothermal compressibility coefficient at constant temperature T -- 2.3.2.4. Linear expansion coefficient -- 2.3.3. Molar heat capacities -- 2.3.4. Young's Modulus -- 2.3.5. Electric permittivity -- 2.3.6. Volumic and area densities of electric charge -- 2.4. Thermodynamic charts: justification of different types -- 2.4.1. Representation of a variable as a function of its conjugate -- 2.4.2. Representation of a characteristic function as a function of one of its natural variables -- 2.5. Stability of phases -- 2.5.1. Case of ensemble E0 of extensive variables -- 2.5.2. Coefficients associated with ensemble En -- 2.5.3. Case of other ensembles of variables -- 2.5.4. Conclusion: stability conditions of a phase in terms of thermodynamic coefficients -- 2.5.5. Example - applying stability conditions -- 2.6. Consistency of thermodynamic data -- 2.7. Conclusion on the macroscopic modeling of phases -- 3: Multi-Compound Phases - Solutions -- 3.1. Variables attached to solutions -- 3.1.1. Characterizing a solution -- 3.1.2. Composition of a solution -- 3.1.2.1. Molar fractions -- 3.1.2.2. Mass fractions -- 3.1.2.3. Concentrations or molarities -- 3.1.2.4. Molalities -- 3.1.3. Peculiar variables and mixing variables -- 3.1.3.1. Definitions -- 3.1.3.2. Molar variables of mixing -- 3.1.3.3. Molar Gibbs energy of mixing -- 3.1.3.4. Other molar variables of mixing -- 3.2. Recap of ideal solutions -- 3.2.1. Thermodynamic definition -- 3.2.2. Molar Gibbs energy of mixing of an ideal solution -- 3.2.3. Molar enthalpy of mixing of the ideal solution.
3.2.4. Molar entropy of mixing of the ideal solution -- 3.2.5. Molar volume of mixing -- 3.2.6. Molar heat capacity of ideal solution: Kopp's law -- 3.3. Characterization imperfection of a real solution -- 3.3.1. Lewis activity coefficients -- 3.3.1.1. Coefficients of activity and reference states -- 3.3.1.2. Relation between the coefficients of activity of the components of a solution -- 3.3.1.3. Influence of temperature on the coefficients of activity -- 3.3.1.4. Influence of other intensive variables on the coefficients of activity -- 3.3.1.5. Another expression of the chemical potential in a condensed solution -- 3.3.1.6. Influence of composition on the coefficients of activity -- 3.3.1.7. Ideal solutions and coefficients of activity -- 3.3.2. Characterizing the imperfection of a real solution by the excess Gibbs energy -- 3.3.2.1. Definition of excess variables -- 3.3.2.2. Excess Gibbs energy -- 3.3.2.3. Excess entropy -- 3.3.2.4. Excess enthalpy -- 3.3.2.5. Excess heat capacity -- 3.3.3. Other ways to measure the imperfection of a solution -- 3.3.3.1. The osmotic coefficient method -- 3.3.3.2. The coefficient method Φ -- 3.4. Activity of a component in any solution: Raoult's and Henry's laws -- 3.5. Ionic solutions -- 3.5.1. Chemical potential of an ion -- 3.5.2. Relation between the activities of ions and the overall activity of solutes -- 3.5.3. Mean concentration and mean ionic activity coefficient -- 3.5.4. Obtaining the activity coefficient of an individual ion -- 3.5.5. Ionic strength -- 3.6. Curves of molar variables as a function of the composition in binary systems of a solution with two components -- 4: Statistics of Object Collections -- 4.1. The need to statistically process a system -- 4.1.1. Collections, system description - Stirling's approximation -- 4.1.2. Statistical description hypothesis -- 4.1.3. The Boltzmann principle.
4.2. Statistical effects of distinguishable non-quantum elements -- 4.2.1. Distribution law -- 4.2.2. Calculation of α -- 4.2.3. Determining coefficient β -- 4.2.4. Energy input to a system -- 4.2.5. The Boltzmann principle for entropy -- 4.3. The quantum description and space of phases -- 4.3.1. Wave functions and energy levels -- 4.3.2. Space of phases: discernibility of objects and states -- 4.3.3. Localization and non-localization of objects -- 4.4. Statistical effect of localized quantum objects -- 4.5. Collections of non-localized quantum objects -- 4.5.1. Eigen symmetrical and antisymmetric functions of non-localized objects -- 4.5.2. Statistics of non-localized elements with symmetrical wave functions -- 4.5.3. Statistics of non-localized elements with an asymmetric function -- 4.5.4. Classical limiting case -- 4.6. Systems composed of different particles without interactions -- 4.7. Unicity of coefficient β -- 4.8. Determining coefficient α in quantum statistics -- 5: Canonical Ensembles and Thermodynamic Functions -- 5.1. An ensemble -- 5.2. Canonical ensemble -- 5.2.1. Description of a canonical ensemble -- 5.2.2. Law of distribution in a canonical ensemble -- 5.2.3. Canonical partition function -- 5.3. Molecular partition functions and canonical partition functions -- 5.3.1. Canonical partition functions for ensembles of discernable molecules -- 5.3.2. Canonical partition functions of indiscernible molecules -- 5.4. Thermodynamic functions and the canonical partition function -- 5.4.1. Expression of internal energy -- 5.4.2. Entropy and canonical partition functions -- 5.4.3. Expressing other thermodynamic functions and thermodynamic coefficients in the canonical ensemble -- 5.4.3.1. Helmholtz free energy -- 5.4.3.2. Pressure -- 5.4.3.3. Gibbs free energy -- 5.4.3.4. Chemical potential -- 5.4.3.5. Heat capacity at constant volume.
5.5. Absolute activity of a constituent -- 5.6. Other ensembles of systems and associated characteristic functions -- 6: Molecular Partition Functions -- 6.1. Definition of the molecular partition function -- 6.2. Decomposition of the molecular partition function into partial partition functions -- 6.3. Energy level and thermal agitation -- 6.4. Translational partition functions -- 6.4.1. Translational partition function with the only constraint being the recipient -- 6.4.2. Translational partition function with the constraint being a potential centered and the container walls -- 6.5. Maxwell distribution laws -- 6.5.1. Distribution of ideal gas molecules in volume -- 6.5.2. Distribution of ideal gas molecules in velocity -- 6.6. Internal partition functions -- 6.6.1. Vibrational partition function -- 6.6.1.1. Diatomic molecules -- 6.6.1.2. Complex molecules -- 6.6.2. Rotational partition function -- 6.6.2.1. Heteronuclear diatomic molecules -- 6.6.2.2. Homonuclear diatomic molecules -- 6.6.2.3. Complex molecules -- 6.6.3. Nuclear partition function and correction of symmetry due to nuclear spin -- 6.6.4. Electronic partition function -- 6.7. Partition function of an ideal gas -- 6.8. Average energy and equipartition of energy -- 6.8.1. Mean translational energy -- 6.8.2. Mean rotational energy -- 6.8.3. Mean vibrational energy -- 6.9. Translational partition function and quantum mechanics -- 6.10. Interactions between species -- 6.10.1. Interactions between charged particles -- 6.10.1.1. Pairing interaction model -- 6.10.1.2. Ionic atmosphere -- 6.10.2. Interaction energy between two neutral molecules -- 6.10.2.1. The hard sphere model without force of interaction -- 6.10.2.2. The hard sphere model without Keesom repulsion force -- 6.10.2.3. The van der Waals force model -- 6.11. Equilibrium constants and molecular partition functions.
6.11.1. Gaseous phase homogeneous equilibria.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Title Page -- Copyright -- Contents -- Preface -- Notations -- Symbols -- 1: Thermodynamic Functions and Variables -- 1.1. State variables and characteristic functions of a phase -- 1.1.1. Intensive and extensive conjugate variables -- 1.1.2. Variations in internal energy during a transformation -- 1.1.3. Characteristic function associated with a canonical set of variables -- 1.2. Partial molar parameters -- 1.2.1. Definition -- 1.2.2. Properties of partial molar variables -- 1.3. Chemical potential and generalized chemical potentials -- 1.3.1. Chemical potential and partial molar free enthalpy -- 1.3.2. Definition of generalized chemical potential -- 1.3.3. Variations in the chemical potential and generalized chemical potential with variables -- 1.3.3.1. Variations with intensive variables -- 1.3.3.2. Variations with composition -- 1.3.3.3. Total differential -- 1.3.4. Gibbs-Duhem relation -- 1.3.5. Generalized Helmholtz relations -- 1.3.6. Chemical system associated with the general system -- 1.4. The two modeling scales -- 2: Macroscopic Modeling of a Phase -- 2.1. Thermodynamic coefficients and characteristic matrices -- 2.1.1. Thermodynamic coefficients and characteristic matrix associated with the internal energy -- 2.1.2. Symmetry of the characteristic matrix -- 2.1.3. The thermodynamic coefficients needed and required to thermodynamically define the phase -- 2.1.4. Choosing other variables: thermodynamic coefficients and characteristic matrix associated with a characteristic function -- 2.1.5. Change in variable from one characteristic matrix to another -- 2.1.6. Relations between thermodynamic coefficients and secondary derivatives of the characteristic function -- 2.1.7. Examples of thermodynamic coefficients: calorimetric coefficients -- 2.2. Partial molar variables and thermodynamic coefficients.

2.3. Common variables and thermodynamic coefficients -- 2.3.1. State equation -- 2.3.2. Expansion coefficients -- 2.3.2.1. Cubic expansion coefficient (or coefficient of relative increase in volume) -- 2.3.2.2. Coefficient of pressure increase at a constant volume -- 2.3.2.3. Isothermal compressibility coefficient at constant temperature T -- 2.3.2.4. Linear expansion coefficient -- 2.3.3. Molar heat capacities -- 2.3.4. Young's Modulus -- 2.3.5. Electric permittivity -- 2.3.6. Volumic and area densities of electric charge -- 2.4. Thermodynamic charts: justification of different types -- 2.4.1. Representation of a variable as a function of its conjugate -- 2.4.2. Representation of a characteristic function as a function of one of its natural variables -- 2.5. Stability of phases -- 2.5.1. Case of ensemble E0 of extensive variables -- 2.5.2. Coefficients associated with ensemble En -- 2.5.3. Case of other ensembles of variables -- 2.5.4. Conclusion: stability conditions of a phase in terms of thermodynamic coefficients -- 2.5.5. Example - applying stability conditions -- 2.6. Consistency of thermodynamic data -- 2.7. Conclusion on the macroscopic modeling of phases -- 3: Multi-Compound Phases - Solutions -- 3.1. Variables attached to solutions -- 3.1.1. Characterizing a solution -- 3.1.2. Composition of a solution -- 3.1.2.1. Molar fractions -- 3.1.2.2. Mass fractions -- 3.1.2.3. Concentrations or molarities -- 3.1.2.4. Molalities -- 3.1.3. Peculiar variables and mixing variables -- 3.1.3.1. Definitions -- 3.1.3.2. Molar variables of mixing -- 3.1.3.3. Molar Gibbs energy of mixing -- 3.1.3.4. Other molar variables of mixing -- 3.2. Recap of ideal solutions -- 3.2.1. Thermodynamic definition -- 3.2.2. Molar Gibbs energy of mixing of an ideal solution -- 3.2.3. Molar enthalpy of mixing of the ideal solution.

3.2.4. Molar entropy of mixing of the ideal solution -- 3.2.5. Molar volume of mixing -- 3.2.6. Molar heat capacity of ideal solution: Kopp's law -- 3.3. Characterization imperfection of a real solution -- 3.3.1. Lewis activity coefficients -- 3.3.1.1. Coefficients of activity and reference states -- 3.3.1.2. Relation between the coefficients of activity of the components of a solution -- 3.3.1.3. Influence of temperature on the coefficients of activity -- 3.3.1.4. Influence of other intensive variables on the coefficients of activity -- 3.3.1.5. Another expression of the chemical potential in a condensed solution -- 3.3.1.6. Influence of composition on the coefficients of activity -- 3.3.1.7. Ideal solutions and coefficients of activity -- 3.3.2. Characterizing the imperfection of a real solution by the excess Gibbs energy -- 3.3.2.1. Definition of excess variables -- 3.3.2.2. Excess Gibbs energy -- 3.3.2.3. Excess entropy -- 3.3.2.4. Excess enthalpy -- 3.3.2.5. Excess heat capacity -- 3.3.3. Other ways to measure the imperfection of a solution -- 3.3.3.1. The osmotic coefficient method -- 3.3.3.2. The coefficient method Φ -- 3.4. Activity of a component in any solution: Raoult's and Henry's laws -- 3.5. Ionic solutions -- 3.5.1. Chemical potential of an ion -- 3.5.2. Relation between the activities of ions and the overall activity of solutes -- 3.5.3. Mean concentration and mean ionic activity coefficient -- 3.5.4. Obtaining the activity coefficient of an individual ion -- 3.5.5. Ionic strength -- 3.6. Curves of molar variables as a function of the composition in binary systems of a solution with two components -- 4: Statistics of Object Collections -- 4.1. The need to statistically process a system -- 4.1.1. Collections, system description - Stirling's approximation -- 4.1.2. Statistical description hypothesis -- 4.1.3. The Boltzmann principle.

4.2. Statistical effects of distinguishable non-quantum elements -- 4.2.1. Distribution law -- 4.2.2. Calculation of α -- 4.2.3. Determining coefficient β -- 4.2.4. Energy input to a system -- 4.2.5. The Boltzmann principle for entropy -- 4.3. The quantum description and space of phases -- 4.3.1. Wave functions and energy levels -- 4.3.2. Space of phases: discernibility of objects and states -- 4.3.3. Localization and non-localization of objects -- 4.4. Statistical effect of localized quantum objects -- 4.5. Collections of non-localized quantum objects -- 4.5.1. Eigen symmetrical and antisymmetric functions of non-localized objects -- 4.5.2. Statistics of non-localized elements with symmetrical wave functions -- 4.5.3. Statistics of non-localized elements with an asymmetric function -- 4.5.4. Classical limiting case -- 4.6. Systems composed of different particles without interactions -- 4.7. Unicity of coefficient β -- 4.8. Determining coefficient α in quantum statistics -- 5: Canonical Ensembles and Thermodynamic Functions -- 5.1. An ensemble -- 5.2. Canonical ensemble -- 5.2.1. Description of a canonical ensemble -- 5.2.2. Law of distribution in a canonical ensemble -- 5.2.3. Canonical partition function -- 5.3. Molecular partition functions and canonical partition functions -- 5.3.1. Canonical partition functions for ensembles of discernable molecules -- 5.3.2. Canonical partition functions of indiscernible molecules -- 5.4. Thermodynamic functions and the canonical partition function -- 5.4.1. Expression of internal energy -- 5.4.2. Entropy and canonical partition functions -- 5.4.3. Expressing other thermodynamic functions and thermodynamic coefficients in the canonical ensemble -- 5.4.3.1. Helmholtz free energy -- 5.4.3.2. Pressure -- 5.4.3.3. Gibbs free energy -- 5.4.3.4. Chemical potential -- 5.4.3.5. Heat capacity at constant volume.

5.5. Absolute activity of a constituent -- 5.6. Other ensembles of systems and associated characteristic functions -- 6: Molecular Partition Functions -- 6.1. Definition of the molecular partition function -- 6.2. Decomposition of the molecular partition function into partial partition functions -- 6.3. Energy level and thermal agitation -- 6.4. Translational partition functions -- 6.4.1. Translational partition function with the only constraint being the recipient -- 6.4.2. Translational partition function with the constraint being a potential centered and the container walls -- 6.5. Maxwell distribution laws -- 6.5.1. Distribution of ideal gas molecules in volume -- 6.5.2. Distribution of ideal gas molecules in velocity -- 6.6. Internal partition functions -- 6.6.1. Vibrational partition function -- 6.6.1.1. Diatomic molecules -- 6.6.1.2. Complex molecules -- 6.6.2. Rotational partition function -- 6.6.2.1. Heteronuclear diatomic molecules -- 6.6.2.2. Homonuclear diatomic molecules -- 6.6.2.3. Complex molecules -- 6.6.3. Nuclear partition function and correction of symmetry due to nuclear spin -- 6.6.4. Electronic partition function -- 6.7. Partition function of an ideal gas -- 6.8. Average energy and equipartition of energy -- 6.8.1. Mean translational energy -- 6.8.2. Mean rotational energy -- 6.8.3. Mean vibrational energy -- 6.9. Translational partition function and quantum mechanics -- 6.10. Interactions between species -- 6.10.1. Interactions between charged particles -- 6.10.1.1. Pairing interaction model -- 6.10.1.2. Ionic atmosphere -- 6.10.2. Interaction energy between two neutral molecules -- 6.10.2.1. The hard sphere model without force of interaction -- 6.10.2.2. The hard sphere model without Keesom repulsion force -- 6.10.2.3. The van der Waals force model -- 6.11. Equilibrium constants and molecular partition functions.

6.11.1. Gaseous phase homogeneous equilibria.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.